• Title/Summary/Keyword: Absorption method

Search Result 3,045, Processing Time 0.028 seconds

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

Acoustic Absorption Coefficient and Impedance of Wood Sections (목재단면(木材斷面)의 흡음계수(吸音係數)와 음향(音響)임피이던스)

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.26-33
    • /
    • 1989
  • The acoustic absorption coefficient and acoustic impedance of 5 species of softwood(sonamoo, sam namoo, gusang namoo, hwaback, sitka spruce) and 5 species of hardwood (Mulgusul namoo, Italian popular, white meranti, red meranti, kalantas) were measured by the standing wave method. which is simple in the setup and gives more accurate result than does any other measuring method. The dependence of the absorption coefficient and complex acoustic impedance on the wood sections. thickness of the sample itself and the back air gap was investigated experimentally in the frequency range from 200Hz to 1800Hz, and the result are as follows: 1. The acoustic absorption coefficient of wood sections was higher on the cross section than radial and tangential sections. 2) The acoustic absorption coefficient were higher in the frequency range from 400Hz to 600Hz, but decreased in the frequency above 600Hz. 3. The genenal tendency of the variation of the normal acoustic impedance was increased according to the frequency. 4. The acoustic absortion coefficient was increased in the to 7mm-thick sample and decreased in 9mm-thick sample. 5. The higher acoustic absorption coefficient was shown in the case with the backing an gap than in the case without the gap.

  • PDF

Effective Absorption Capacity of Highly Absorptive Materials using Isothermal Calorimetry, Considering the Effect of Specific Surface Area (등온열량계를 사용한 고흡수성 재료의 유효흡수율 측정: 비표면적의 영향)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • The use of highly absorptive materials in cement-based materials is increasing for internal curing purpose. However, calculation of correct absorption capacity of such materials is not easy, which leads to change in the effective water-to-cement ratio of cement paste by either absorbing or releasing water. In this study, effective absorption capacity of a highly absorptive material was found using isothermal calorimetry. Moreover, the effect of specific surface area was investigated. It was found that the method was capable of finding effective water absorption capacity of activated carbon fiber. For the activated carbon fiber used in this research, the effect of specific surface area was negligible because the high BET surface area was due to micropores less than 1nm, which does not affect the rate of hydration curve. Thus, the effective absorption capacity of such materials can be found successfully using this method.

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in a Reverberation Chamber (수음실 잔향 시간변화에 따른 바닥충격음레벨 특성 - 잔향실을 중심으로 -)

  • Jeong, Jeong Ho;Kim, Jeong Uk;Jeong, Jae Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • Field measurement method of heavy/soft impact sound pressure level which is regulated in JIS and ISO has been using in Korea, Japan and Canada. It is reported that heavy/soft impact sound pressure level was varied by the sound field condition of receiving room such as sound absorption power and room volume. In this study, it is checked that heavy/soft impact sound pressure level was affected by the receiving sound field condition. Rubber ball and bang machine sound pressure level was measured in the vertically connected reverberation chamber. In oder to check the effect of receiving sound field on heavy/soft impact sound pressure, sound absorption power was changed with polyester sound absorption blankets with air space and glass wool. The reverberation time at 1 kHz band was changed from 10 s to 0.2 s by sound absorption material. Rubber ball sound pressure level measured without sound absorption material was 58 dB in $L_{i,Fmax,AW}$, but the level was 46 dB with sound absorption treatment. From this result, it is confirmed that sound field correction method is needed in the heavy/soft impact sound pressure level measurement method using bang machine and rubber ball.

Enhancement of carbon dioxide absorption rate with metal nano particles (금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진)

  • Choi, Young Ju;Youn, Min Hye;Park, Ki Tae;Kim, In Ho;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6439-6444
    • /
    • 2015
  • With increasing concern about global warming, CCS (Carbon dioxide capture and storage) has attracted much attention as a promising technology for reducing $CO_2$ emission. It is necessary to develop the cost-effective absorbents materials in order to rapid commercialize CCS technologies. In this work, he study for the promotion of absorption rate in $CO_2$ capture system using metal nanoparticle were investigated. Three kinds of metal nanoparticle, cobalt, zinc, and nickel, were prepared by wet and dry method and effect of preparation method on the absorption rate of $CO_2$ were compared. Among the tested using pH method, nickel nanoparticle prepared by wet method showed the most significant improvement of $CO_2$ absorption rate. In case that metal nanoparticle is applied to CCS process, it is expected to be more efficient in $CO_2$ capture process due to reduce the size of absorption tower.

A New Method for Determining the Absorption Coefficient of Oxy- and Deoxyhemoglobin by use of a Thin-fi im Optical Waveguide Sensor (박막광도파로 센서를 이용한 산화 및 환원 혈색소의 새로운 흡광계수 측정법)

  • 강신원
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 1995
  • A simple method for determining the absorption coefficient of oxyhemoglobin and deoxyhemoglobin in human blood is proposed as an application of the complex propagation constant of a guided wave in a thin-film optical waveguide. A serial multichannel sample chamber is constructed on the waveguide to vary the interaction length between the evanescent field and the sample, and the dependence of the sensor response on the interaction length is investigated for the various concentration of two hemoglobins. The sensor response is linearly proportional to the interaction length and the concentration of two hemoglobins. The attenuation constant due to the evanescent field absorption between the samples is experimentally obtained with the designed sensor, and then the absorption coefficient is determined by the proposed method. The absorption coefficients determined by the proposed method fairly well coincided with those obtained by the conventional transmission measurement.

  • PDF

Estimation of Carbon Absorption Distribution by Land Use Changes using RS/GIS Method in Green Land (RS/GIS를 이용한 토지이용변화에 의한 녹지의 이산화탄소 (CO2) 흡착량 분포 추정)

  • Na, Sang-Il;Park, Jong-Hwa;Park, Jin-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • Quantification of carbon absorption and understanding the human induced land use changes (LUC) forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by LUC through remote sensing technology. The Landsat imagery four time periods was classified with the hybrid classification method in order to quantify carbon absorption by LUC. Thereafter, for estimating the amount of carbon absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated with the crown width extracted from digital forest cover type map. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC guideline, was used to convert the stand biomass into the amount of carbon absorption. Total carbon absorption has been modeled by taking areal estimates of LUC of four time periods and carbon factors for land use type and standing biomass. Results of this study, through LUC suggests that over a period of construction, 7.10 % of forest and 9.43 % of barren were converted into urban. In the conversion process, there has been a loss of 6.66 t/ha/y (7.94 %) of carbon absorption from the study area.

Sound Absorption Measurement by Using Micro-Flown Velocity Sensor (Mciro-flown 속도센서를 이용한 흡음률 측정)

  • 정성수;조문재;김용태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.692-693
    • /
    • 2004
  • We introduce a new velocity sensor, micro-flown sensor, which was developed by H-E de Bree. The sound absorption coefficients of a fiber material with the conventional pressure microphones and the micro-flown sensors were measured and compared. The experimental results show that both sensors could be well applied to measure the sound absorption coefficient but the pressure sensor was rather stable than micro-flown sensor

  • PDF

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • Jung, Sung-Soo;Lee, Woo-Seop;Jho, Moon-Jae;Suh, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.185-190
    • /
    • 2000
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/$m^3$ and 32 kg/$m^3$) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources, 1/3-octave band and white noise, gives similar values.

  • PDF