• 제목/요약/키워드: Absorption coefficients

검색결과 416건 처리시간 0.026초

생체조직의 광학적 흡수계수 측정에 관한 연구 (A Study on Measurements of Optical Absorption Coefficients of Biological tissue)

  • 임현수;김남중
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권2호
    • /
    • pp.213-220
    • /
    • 1999
  • 본 연구는 쥐의 뇌, 심장, 간, 근육 및 근육부위의 종양조직과 인간의 뇌 조직과 뇌 종양 조직의 광학적 흡수계수를 500nm~900nm 범위의 파장에서 측정하고 비교분석하였다. 광학적 흡수계수는 물질마다 가지고 있는 고유한 성질을 나타내므로 생체조직의 광학계수를 측정하면, 생체 조직의 고유한 특성을 나타낼 수 있다. Spectrograph monometer와 PDA를 이용하여, 동결절편으로 제작한 시편에 대하여 실험하였다. 실험결과, 쥐 조직과 인체의 뇌 조직의 흡수계수는 정상적인 일반 조직과 종양 조직에서 차이가 분명하게 있음을 알 수 있었다. 정상 뇌 조직의 흡수계수는 파장이 변화함에 따라 0.1~0.2$cm^{-1}$사이의 비교적 균일한 값을 보이는데 반하여, 뇌종양 조직의 흡수계수는 파장에 따라서 크게는 약 0.4~0.5$cm^{-1}$정도의 변화가 있다. 본 실험 결과들은 다양한 조직에서의 광학계수 중에서 흡수계수를 측정함으로써, 생체조직의 흡수계수의 변화를 감지하여 질병진단의 지표로 삼을 수 있다.

  • PDF

배후공기층이 복합흡음구조의 흡음특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Air Space on the Absorption Property of Composite Absorption System)

  • 오양기
    • KIEAE Journal
    • /
    • 제1권2호
    • /
    • pp.47-54
    • /
    • 2001
  • Single sound absorbers such as porous materials, panels, and Helmholts resonators have limited performance with some extents of frequency region. For example, porous materials do not attenuate low frequency sounds, while panels do not absorb high frequency sounds. Composite absorption structure with coverings, porous materials, and air gaps are an alternative for wide band sound absorption. Slits, panels, perforated panels are those materials for coverings, glass wool, mineral wool, polyester, and polyurethane are frequently used porous materials. Air gap between the porous material and background surface is one of major factors which governs the absorption characteristics of composite absorption structures, especially in the low frequency area. Calculations and measurements show that the absorption coefficients of composite absorption structure, in mid and low frequency bands, are getting higher with increased air gaps. Perforated panels rather than slits and panels are good coverings with higher number as far as absorption coefficient is concerned. Perforated panels with porous materials and 37 cm of air gaps in background have high absorption coefficients for all frequency bands, above 0.7 to 1.0. All measurements are performed in reverberation chamber, Mokpo National University, according to ISO 354 and ISO 3382.

  • PDF

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성 (Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments)

  • 김무한;권영진;김용로;김재환;장종호;조봉석
    • 한국건축시공학회지
    • /
    • 제4권1호
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

패키지 인쇄에 있어서 Kubelka-Munk Model 유래의 산란 및 흡수 계수를 이용한 색상 재현성 예측 (Prediction of Color Reproduction using the Scattering and Absorption Coefficients derived from the Kubelka-Munk model in Package Printing)

  • 현영주;박재상;태현철
    • 한국포장학회지
    • /
    • 제27권3호
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of package printing technology, the package has expanded from the basic function of protecting products to the marketing function through package design. Color, the visual element that composes the package design, is delivered to the consumer most quickly and effectively. As color marketing of these package designs expands, accurate color reproduction that the product wants to express is becoming more important. The color of an object is transmitted by absorption and scattering of light. Spectral reflectance refers to the intensity of light reflected by an object at different wavelengths by the spectral effect. As a result, the color of the object is expressed in various colors. Packaged printing inks have their own absorption and scattering coefficients, and the Kubelka-Munk model for color reproduction and prediction defines the relationship between these correlation coefficients through reflectance. In the Kubelka-Munk model for color reproduction and prediction, the relationship between the absorption and scattering coefficients (K/S) of printed material is predicted as the sum of the K/S values according to the mixing ratio of all color ink used. In this study, the reflectance of the measured print is reversely calculated at the mixing ratio of print ink using the Kubelka-Munk model. Through this, the relationship value of the ink-specific absorption/scattering coefficient constituting the final printed material is predicted. Delta E is derived through the predicted reflectance, and the similarity between the measured value and the predicted value is confirmed.

단일수치 평가방법에 따른 방음벽의 흡음성능 고찰 (Sound Absorption Performance of Noise Barrier According to Single Number Rating Methods)

  • 김용희;이성찬
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2017
  • In this study, single number rating methods of sound absorption coefficients are discussed. After that the sound absorption performance of noise barriers which are classified by Korea Standard are analyzed according to several standards. The existing rating methods such as NRC (noise reduction coefficient), SAA (sound absorption average) or ${\alpha}_w$ (weighted sound absorption coefficient) from ASTM C423, KS F 3505 and ISO 11654 are introduced. The sound absorption performance of noise barrier is evaluated to compare NRC and ${\alpha}_w$ value. When the value is over 0.6 there are large variance between NRC and ${\alpha}_w$ value. As results, it is needed to unify single number rating methods of sound absorption coefficients for Korean standards on sound absorbing materials.

공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구 (A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air)

  • 김선창;오명도;이재헌
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.

증발산 장기 관측에 따른 크립톤 습도계의 흡수 계수의 변화와 이슬점 생성기를 이용한 기기 보정 (Changes in Absorption Coefficient of Krypton Hygrometer in Long-term Monitoring of Evapotranspiration and Its Calibration Using a Dew Point Generator)

  • 박윤호;김준;이희춘;임종환;권원태
    • 한국농림기상학회지
    • /
    • 제2권3호
    • /
    • pp.75-79
    • /
    • 2000
  • Calibrations of fast-response krypton hygrometers were carried out using a dew-point hygrometer to investigate the changes in their absorption coefficients due to long-term field operation. Absorption coefficients changed proportionally with the number of hours of field operation. The increase in absorption coefficient indicates that the water vapor flux, calculated with the original absorption coefficient, would underestimate the true flux in the field. To minimize the uncertainty in quantifying evapotranspiration and surface energy budget studies, frequent calibrations (for example, every 1500 hours of field operation) of krypton hygrometer are recommended.

  • PDF

다중 다공판 시스템의 흡음성능 예측을 위한 계산모델 개발 (A New Estimation Model of Predicting the Sound Absorption Performance for Multiple Perforated Plate Systems)

  • 허성춘;이동훈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.877-882
    • /
    • 2002
  • A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

  • PDF

전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측 (Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method)

  • 이동훈;허성춘;권영필
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.