• Title/Summary/Keyword: Absorption Heat Pump

Search Result 105, Processing Time 0.021 seconds

Analysis of Energy Consumption of Buildings in the University (대학교 건축물의 에너지소비 특성 및 변화 추이 분석:서울소재 A대학교의 에너지 소비 실태를 중심으로)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.633-638
    • /
    • 2011
  • Increasing demand for comfortable indoor environment and air-conditioning demand is also increasing. Building energy consumption in university which is made up of many different kinds factor was researched. Central control air-conditioning systems are being replaced with individually controlled air-conditioning system. The amount of growth of electricity consumption is due to the increasing demand of EHP. Conversely, the demand for absorption chiller-heater is shrinking. Winter and in summer a lot of electricity and gas usage. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because EHP and the absorption chiller-heater are used at the same time in some of the buildings. To use energy efficiently is needed additional research about environmental impact, economic evaluation.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

Economic Estimation of Heat Storage Type Geothermal source Heat Pump System Adopted in Government office Building by a Payback Period Method (투자비회수기간법을 이용한 공공청사 적용 축열식 지열히트펌프 시스템의 경제성 평가)

  • Ko, Myung-Jin;Oh, Jung-Keun;Kim, Yong-In;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.175-182
    • /
    • 2007
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. As a result Geothermal Source Heat Pump System (GSHPs) was being recognized effective alternative systems to conventional heating and cooling systems owing to their higher energy utilization efficiency. But GSHPs has not been popularized thereby the large amount of initial cost of the system and insufficiency of studies for economic estimation. Therefore GSHPs are being developed to make up for the weak points that are the large amount of initial cost of the system and much annual electricity consumption. In this paper, economic estimation was conducted by payback period method and it shows that the pay back period of Heat Storage Type GSHPs was calculated 6.8 years compared with the absorption Chiller-Heater system and 8.2 years compared with the Ice storage-Boiler system. Heat Storage Type GSHPs also has the lower annual source energy consumption than the conventional heating and cooling systems because of using nighttime electricity.

Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat (저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7736-7744
    • /
    • 2015
  • Considering the significant waste of industrial energy, effective use of low temperature waste heat is extremely important. In this study, a heat pump cycle with double effect and double stage was realized, which escalates the hot water temperature from $50^{\circ}C$ to $70^{\circ}C$ using $160^{\circ}C$ high temperature heat source and $17^{\circ}C$ low temperature heat source. The steam generated in the first generator condenses in the first condenser generating steam in the second generator. The steam condenses in the second condenser and is provided to the second evaporator. Part of the water out of the second evaporator is supplied to the first evaporator, which evaporates using low temperature waste heat. The evaporated steam enters the first absorber and the second evaporator. The steam out of the second evaporator is absorbed into the solution at the second absorber. The hot water temperature is raised in the second condenser and in the second absorber. Proper flow rates and UA values, which satisfied temperature lift $20^{\circ}C$ and COP 1.6, were deduced through trior and error. The COP increases as the temperature of the high temperature water increases, hot water temperature decreases and flow rate increases, waste water temperature and flow rate increases, solution circulation rate decreases. On the other hand, the temperature rise of the hot water increases as the temperature of the high temperature water increases, hot water temperature increases and flow rate decreases, waste water temperature and flow rate increases, solution circulation rate increases. In addition, the COP and hot water temperature rise increase as UAs of the heat exchangers increase.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

A Study on Heat and Mass Transfer Characteristics of LiBr-$H_2$O Solution with a Sufactant Flowing over a Cooled Horizontal Tube (계면활성제 첨가시 수평 냉각관 외부를 흘러내리는 LiBr수용액의 열 및 물질전달 특성에 관한 연구)

  • 김경희;설신수;이상용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2002
  • Heat and mass transfer characteristics of a surfactant-added LiBr-$H_2O$ solution flowing over a single horizontal tube were examined experimentally. The parameters considered were surfactant (2-ethyl-1-hexanol) concentration, solution temperature at the top of the tube and absorber pressure. Even with an amount of the surfactant below the solubility limit, heat and mass transfer performances were enhanced tremendously. The Nusselt and Sherwood numbers increased by about 70% and 340%, respectively, when 10 ppm of the surfactant was added. However, an excess amount of the surfactant in the solution did not bring a further enhancement. The absorption performance deteriorated when the non-condensable gases were extracted from the system (by a vacuum pump) since the vaporized surfactant was also extracted during the process. Therefore, it is desirable to add a sufficient amount of the surfactant (more than 10 ppm) to maintain high performance of absorption.

Research and Development of the Triple Effect Absorption Chiller-Heater Technology in Japan

  • Kashiwagi, Takao;Akisawa, Atsushi;Hamamoto, Yoshinori
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.3
    • /
    • pp.43-49
    • /
    • 2004
  • This article reviews R&D of triple effect cycle developed in Japan. Most of the refrigeration and heat pump technologies are dominated by vapor compressor system. The vapor compressor system, however, is highly concerned with the environmental regulations , as most of the vapor compressor technologies are using CFCs or HCFCs which are known as ozone depleting and global warming gases. As a consequence, refrigeration technologists are trying to invent or to develop an alternative to vapor compressor refrigeration devices. Thermally driven, absorption technology is one of the possible alternatives. At the moment, absorption cycle is most promising technology The paper summarizes briefly the current research and development in advanced technologies of triple effect absorption chiller-heater in Japan.(omitted)

  • PDF

Simulation of Solar/Absorption Cooling Hybrid System and Examination of Its Operating Condition (태양열을 이용한 흡수식 냉방시스템의 시뮬레이션과 운전조건의 검토)

  • Her, Jae-Young;Lee, Sang-Yong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 1985
  • Solar/absorption cooling system was analyzed and its operating condition was examined. For the system, the optimum size of absorption refrigerator and collector area should be determined. As the temperature of water supplied to the generator increases, the collector efficiency decreases whereas the coefficient of performance of absorption refrigerator increases up to a certain point, and vice versa for decreasing of the temperature of water supplied to the generator . Thus if the reeling load is given, the appropriate operating condition can be determined between the two opposing trends by simulation program. As an example of the simulation, the case of Jejudo province was studied. Under the conditions (such as weather data and prices of components, etc.) given en the sample calculation, the result shows that the optimum temperature of water supplied to the generator turned out to be $80.3^{\circ}C$, and still shows a large economical disadvantage in present stage compared to the case of conventional vapor compression cooling/heating combined heat pump system.

  • PDF