• 제목/요약/키워드: Absorbing materials

검색결과 491건 처리시간 0.027초

금속와이어 흡음재의 물리적 특성에 관한 연구 (A Study on the Physical Characteristics of Steel-Wire Sound Absorbing Materials)

  • 주경민;이동훈;용호택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1244-1249
    • /
    • 2002
  • In this study, the physical characteristics of steel-wire sound absorbing materials with different thickness and bulk density is experimentally obtained in terms of the porosity and specific flow resistivity. Based on the experimental results, the following conclusions can be made. The porosities of steel-wire sound absorbing materials are smaller than those of general absorbing materials, which are inversely proportional to the volume densities. For the porosity measurement with a good accuracy, the dynamic correction based on the system compliance should be involved in porosity measurement. In addition, the flow condition for the precise measurement of the specific flow resistivity of steel-wire sound absorbing materials should be limited in the laminar flow region.

  • PDF

스펀지형 흡음재의 연소특성에 관한 연구 (A Study on Combustion Characteristic of Sponge Type Sound-absorbing Materials)

  • 송재용;사승훈;남정우;김진표;박종택;이두형
    • 한국화재소방학회논문지
    • /
    • 제25권3호
    • /
    • pp.20-27
    • /
    • 2011
  • 본 논문은 건축물 내부 마감 재료로 사용되는 스펀지형 흡음재의 연소특성에 관하여 연구하였다. 연소특성 평가를 위하여 일반 재질 및 난연 재질의 스펀지형 흡음재를 대상으로 연소실험을 수행하였으며, 건축용 내부 마감 재료 사용의 적합성 평가를 위하여 콘칼로리미터법을 이용한 열방출률 및 연기밀도를 측정 분석하였다. 연소특성 실험 결과, 일반 재질의 흡음재는 착화와 동시에 급속히 연소되는 특성을 나타내었으며, 난연 재질의 흡음재는 착화와 동시에 소화되는 특성을 나타내었다. 그러나 난연 재질의 흡음재에 착화시간을 길게 하는 경우, 연소가 진행되는 것으로 평가되었다. 열방출률 및 연기밀도는 한국산업규격 KS F ISO 5660-1 및 국제해사기구의 FTP Code를 만족하지 못하는 것으로 평가되었으며, 이러한 결과로 볼 때, 스펀지형 흡음재는 건축용 내부 마감 재료로 사용하기 부적합한 것으로 판단된다.

터널내의 흡음재 부착 효과 연구 (A Study for the Effect of Sound Absorbing Materials in the Tunnel)

  • Park, Han-Lim;Lee, Duck-Joo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.750-750
    • /
    • 2001
  • Todays, according to development of traffics, there are so many tunnels around us. Tunnels are used for trains, subway trains, cars, etc. Especially for subway, all of its routes are tunnels. So the noise of the subway train cannot radiated out of the station and the noise level in the station and train cabin is so high. There are some methods to reduce this noise and one of them is using absorbing materials. But the area of the tunnel and station is very large, so it is important to determine the effective position and amount of absorbing materials before attaching them. In this study, we studied the effect of sound absorbing materials in the tunnel using boundary element method. We applied BEM for general boundary conditions. With BEM calculations, we found the effect of absorbing materials and effective positions for the subway tunnel and station.

  • PDF

배기가스를 정화하는 흡음재의 특성에 관한 연구 (A Study on Properties of Sound Absorbing Materials with Characteristics of Exhaust-gas Purge)

  • 이승한;황보광수;장석수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.935-940
    • /
    • 2001
  • This study search for absorbing sound and exhaust-gas which aims to manufacture continuous void by using clay and foam, the surface of materials is covered with $TiO_{2}$ powder as heat treatment. According to the results of the experiment, the increase of thickness of manufactured sound absorbing materials caused the increase of absorption rate in the range of low and middle sound and thus it can be an important factor of improving absorption rate. Sound absorbing materials could satisfy 70% of the average of sound absorption ratio in 7cm thickness. Also, the manufactured sound absorbing materials is covered with $TiO_{2}$ showed an excellency in the clarification of exhaust-gas under ultraviolet rays treatment when 70% of removal rate and about 10% of generation rate of $NO_{2}$ is settled by the flow of 2 $\ell$/min NO gas. Especially, manufactured sound absorbing materials could improve compressive strength of continuos porous concrete. in the case of 7% bubble addition, when the substitution rate of coagulator was 30% and 20%, compressive strength was 45kgf/$cm^{2}$ and 65kgf/$cm^{2}$ respectively. As the substitution rate of coagulator reducing, compressive strength increased after preforming burnt clay.

  • PDF

고밀도 폴리에스터 흡음재를 이용한 이중층 흡음시스템의 음향특성 및 흡음성능 향상 방안에 관한 연구 (A Study on the Acoustic Characteristics and Absorption Performance Improvement Method of Double Layered Sound Absorption System Using High Density Polyester Absorbing Materials)

  • 윤제원;장강석;조용성
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.331-339
    • /
    • 2016
  • To improve the acoustic performance of sound absorbing materials, the thickness of the material should be increased or the sound absorbing material having an irregular surface shape should be used. In this study, the acoustic characteristics and methods to improve the acoustic performance of a sound absorbing system equipped with double layered polyester sound absorbing materials were investigated. The numerical model was set up and the results obtained from the model were compared with the actual measurement data. And, strategies to improve the acoustic performance of sound absorbing systems with double layered sound absorbing materials made of polyester with different configuration were shown. So, this study is expected to be usefully used at sites that require high acoustic absorption performance with minimal installation thickness to reduce sounds reflection in narrow spaces such as interior of subway tunnels or in noise barriers installed adjacent to rails.

건축용 내장재의 연소 특성에 관한 연구 (A Study on the Combustion Characteristic of Building Materials)

  • 송재용;사승훈;남정우;김진표;박종택
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.23-28
    • /
    • 2011
  • This paper studied combustion characteristics of the building materials such as polyurethane-foam, sponge type sound-absorbing materials and styrofoam. To estimate of the combustion characteristics, we carried out combustion experiment of the building materials. And then to evaluate the suitability of the building materials, we measured heat release rate(HRR) and smoke density(Ds) of polyurethane-foam, sponge type sound-absorbing materials and styrofoam using by a cone-calorimeter. From the combustion experimental results, the general type sound-absorbing materials (GSAM) and styrofoam were rapid burned simultaneously with ignition and the incombustibility type sound-absorbing materials(ISAM) and polyurethane-foam had all gone out simultaneously with ignition. Measured results of HRR and Ds were not satisfied KS F ISO 5660-1 and IMO FTP Code, from the results, the polyurethane-foam, the sponge type sound-absorbing material and the styrofoam were ill-suited for using building interior materials.

전파흡수능 최적화 설계 (An Optimal Design of Microwave Absorbing Material)

  • 서일성;송정근
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.869-874
    • /
    • 2010
  • A research for the optimal design of microwave absorbing material featuring for the broadband has been conducted to apply to warship. A multilayered structure was suggested using wave absorbing layers and resistance layer to perform high performance in broadband frequencies. For the optimization of the wave absorbing characteristics, the thickness and permittivities of the absorbing layers as well as the surface resistance of the resistant layer were determined using genetic algorithm. The data base of permittivities related to the density of the dielectric materials and loss materials was obtained by the experiments for the dielectric constants of the absorbing layers, furthermore, the results were numerically expressed and used for the optimization.

흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구 (A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials)

  • 강동헌;양해상;성우제
    • 한국음향학회지
    • /
    • 제43권3호
    • /
    • pp.261-269
    • /
    • 2024
  • 본 논문에서는 흡음형 소음기의 음향성능을 향상시키기 위해 다층 흡음재 배치 순서를 최적화하였다. 소음기의 음향성능은 투과손실로 판단하였으며, 투과손실을 계산하기 위해 유한요소법 기반 수치해석 프로그램을 사용하였다. 흡음재는 흡음형 소음기에서 많이 사용되는 다공탄성 물질인 폴리우레탄을 사용하였으며, 내부에 공기가 흐르는 상황을 가정하여 Biot-Allard 모델을 적용하였다. 2 kHz 대역까지 관심주파수 영역을 설정하여 흡음재가 단층으로 구성되어 있을 때 음향성능에 영향을 주는 물성치를 확인하였으며, 폴리우레탄 물성치를 바탕으로 단층 및 다층 흡음재를 가진 소음기의 음향성능을 서로 비교하였다. 이후 Nelder-Mead 방법을 적용하여 소음기 내 다층 흡음재의 배치 순서를 최적화하였으며, 단층 흡음형 소음기에 비해 평균 투과손실이 증가하는 것을 확인하였다.

환경친화적 완충재의 개발을 위한 폐지 섬유의 이용 (Utilization of Wastepaper Fibers for Development of Environment-friendly Shock-Absorbing Materials)

  • 김경윤;김철환;이영민;송대빈;신태기;김재옥;박종열
    • 펄프종이기술
    • /
    • 제38권2호
    • /
    • pp.52-60
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made of wastepaper such as Korean old corrugated containers(KOCC) and Korean old newsprint (KONP) with a vacuum forming method. The plate-like cushioning materials made of KOCC and KONP respectively by vacuum forming showed superior shock-absorbing properties with lower elastic moduli compared to expanded polystyrene (EPS) and pulp mold. Even though the plate-like materials had many free voids in their fiber structure, their apparent densities (${\approx}0.1g/cm^3$) were a little higher than that of EPS (${\approx}0.03g/cm^3$) and much lower than that of pulp mold(${\approx}0.3g/cm^3$). However, the elastic moduli of the cushioning materials made of wastepaper were much lower than that of EPS or pulp mold. This finding implies that the cushioning materials made of KOCC fibers containing more lignin than KONP show better shock-absorbing properties than KONP. Moreover, the cushioning materials made of KOCC and KONP respectively showed greater porosity than pulp mold. The addition of cationic starch to the cushioning materials contributed to the increase in the elastic modulus to the same level as that of EPS. Furthermore, the deterioration in fiber quality by repeated use of wastepaper played a positive role in improving shock-absorbing ability.

흡음재가 초음속 제트의 소음특성에 미치는 영향 (Effect of Sound-Absorbing Materials on the Characteristics of Supersonic Jet Noise)

  • 곽종호;권용훈;청목준지;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1499-1504
    • /
    • 2004
  • The effects of absorbing materials on the characteristics of supersonic jet noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. In order to investigate the effect of absorbing materials, baffle plates of different materials (metal, grass wool and polyurethane foam) were installed at the exit of the nozzle. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained show that the screech tone amplitude and the overall sound pressure level reduce by using the baffle plates of absorbing materials, compared with the metal baffle plate. It is also found that the characteristics of supersonic jet noise are strongly dependent on the size of baffle plate.

  • PDF