• 제목/요약/키워드: Absorbing energy

검색결과 458건 처리시간 0.033초

Seismic study of buildings with viscoelastic dampers

  • Pong, W.S.;Tsai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제3권6호
    • /
    • pp.569-581
    • /
    • 1995
  • In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.

1차원 모델을 이용한 한국형 고속전철의 충돌 안전도 평가 (An Evaluation of Crashworthiness for the Full Rake KHST Using ID Model)

  • 구정서;조현직;김동성;윤영한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.217-222
    • /
    • 2001
  • The best method to evaluate crashworthiness of a trainset as a whole is to analyse one dimensional dynamic model composed of nonlinear dampers, springs and bars, and masses. In this study, crashworthiness of KHST was evaluated by analysing a nonlinear spring/bar-damper-mass model. The numerical results show that the KHST can easily absorb kinetic energy at lower impact force and acceleration in a heavy collision, when compared with KTX. Also, the KHST can be protected from any damage in its carbody and components except the prepared energy absorbing tube in a light collision, like a traint-to-train accident at speed under 8 kph. However, the KTX can be much damaged in the a light collision because there is no energy absorbing tube.

  • PDF

1차원 충돌 동역학 해석을 이용한 한국형 고속전철의 충돌사고 안전도 평가 (An Evaluation of Crashworthiness on the KHST using 1D Collision Dynamic Analysis)

  • 구정서;조현직
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the crashworthiness of KHST has been evaluated by analysing a nonlinear spring/bar-damper-mass model of 1-dimensional collision dynamics. The numerical results show that KHST can easily absorb kinetic energy at lower impact force and acceleration in heavy collisions, when compared with KTX. Also, in a Light collision like a traint-to-train accident at lower speed under 8 kph, the carbody and components of KHST can be protected without any damage except the energy absorbing tube to be replaced easily. However, KTX may be much damaged in the light collision because there is no energy absorbing tube. In conclusion, the crashworthy performance of KHST has been much improved than that of KTX, although there are something to be improved for a better crashworthy performance

  • PDF

차체구조용 박육부재의 압궤특성에 관한 연구 (A Study on the Collapse Characteristics of Thin-walled Structural Members for Automobiles Under Axial Compression Load)

  • 김정호;임성훈;양인영
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-14
    • /
    • 1997
  • In this paper, collapse test of thin-walled structural member widely used for automobiles is carried out under static compression load to observe the effects of cross- sectional shape and material on the energy absorbing capacity in the viewpoint of cras- hworthiness. Specimens tested consist of two sorts(Aluminium, CFRP) and configur- ations(Circular, Square) with variation in thickness. Also, comparisons of Al circular and square specimens are made to find the influence of difference in shape on the energy absorbing capability according as the thickness of specimen varies.

  • PDF

A New Concept of Energy Absorbing System for the Double Hull Tanker

  • Lee, J. W.;Petershagen, H.;Rorup, J.;Kim, J. Y.;Yoon, J. H.
    • Journal of Ship and Ocean Technology
    • /
    • 제3권1호
    • /
    • pp.12-26
    • /
    • 1999
  • A new concept of collision energy absorbing system for ;he New Oil-tankers with Advanced Double Hull Structure(NOAHS and NOAHS II) are presented through the joint-research pro-gran between Inha and Hamburg-Harburg University. A comparative study on col vision resistance of these proposed side structures with standard double hull structure of 310K DWT class VLCC, is carried out. The fatigue investigation of structural detail parts is also included. It contains a comparative fatigue study based on pertinent regulations of Classification Societies.

  • PDF

1차원 충돌 동역학 모델을 이용한 한국형 고속전철의 충돌안전도 평가 (An Evaluation of Crashworthiness on the KHST using 1D collision dynamics)

  • 조현직;구정서;윤영한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, the crashworthiness of KHST is evaluated by analysing a nonlinear spring/bar-damper-mass model using 1 dimensional collision dynamics. The numerical results show that KHST can easily absorb kinetic energy at lower impact force and acceleration in heavy collisions, when compared with KTX. Also, in a light collision like a traint-to-train accident at speed under 8 kph, the carbody and components of KHST can be protected without any damage except a energy absorbing tube to be replaced easily. However, KTX may be much damaged in the light collision because there is no energy absorbing tube. In conclusion, the crashworthy performance of KHST has been much improved than that of KTX, although there remains something to be improved for a better performance.

  • PDF

현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가 (Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests)

  • 구호본;박혁진;백영식
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.111-121
    • /
    • 2001
  • 낙석방지울타리는 도로절개면 상부에서 발생한 낙석의 도로 유입을 차단하기 위하여 설치되는 구조물로 국내 국도 절개면 중 70%이상 시공되어 있다. 이와 같이 도로 절개면의 재해예방을 위하여 범용적으로 사용되는 시설물로서 그 중요성이 매우 강조될 수 있으나 국내의 경우 아직까지 설계 및 시공에 대한 기준이 미흡하고 절개면의 높이, 경사도 등 특성을 고려하지 않은 단일 표준단면도에 의해 설계, 시공되어 이의 효율성에 한계가 있는 것이 사실이다. 따라서, 본 연구에서는 현장실험을 통해 낙석방지울타리의 흡수가능에너지를 파악하였다. 실험을 위하여 높이 20m, 경사 65도의 절개면을 선정하여 4개 규모의 콘크리트 볼(0.7, 1.3, 2.3, 4.3 톤)을 절개면 상부로부터 낙하시켜 낙석방지 울타리의 성능을 평가하였다. 본 논문은 시공완료된 절개면을 대상으로 현장실물실험을 통해 낙석운동에너지, 암반의 반발계수, 낙석방지울타리의 흡수에너지 등을 산정하여 절개면 특성별 낙석방지울타리의 설계에 필요한 기초 자료를 제공하고자 하였다. 현장실험을 통해 획득한 낙석방지울타리의 흡수가능에너지는 약 50kJ로 이는 약 0.4톤의 낙석이 10m의 높이에서 낙하할 때 발생하는 에너지와 동일하다.

  • PDF