• Title/Summary/Keyword: Absorbing ability

Search Result 96, Processing Time 0.028 seconds

A Study on Measurement Techniques of EM Wave Absorbing Ability of a RAM for RF Stealth (RF 스텔스용 RAM의 전파흡수능 측정기법에 관한 연구)

  • Choi, Chang-Mook;Lim, Bong-Taeck;Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1331-1337
    • /
    • 2010
  • In this paper, measurement techniques of absorbing ability for a RAM were studied for RCS Reduction needed for materializing ADD's RF stealth. As for the measurement techniques of absorbing ability, the theories of the free space method, similar to real radar system, and transmission line method, suitable for lab scale, were established. And we made real RAM samples, measured absorbing ability according to each, and compared the results. After comparison, electromagnetic(EM) wave absorbing ability was measured to be somewhat superior in free space method and overall uniform pattern was observed. Therefore, by applying measurement techniques by stage and by frequency we could develop RAM in a more efficient way.

A Study on Measurement Techniques of Absorbing Ability for a RAM (RAM 흡수능 측정기법 연구)

  • Choi, Chang-Mook;Lim, Bong-Taeck;Ko, Kwang-Soob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.527-530
    • /
    • 2010
  • In this paper, measurement techniques of absorbing ability of a RAM for RCS reduction were studied. As for the measurement techniques of absorbing ability, the free space method and transmission line method were established. And we made real RAM sample, measured absorbing according to each, and compared the results. After comparison, electromagnetic wave absorbing ability was measured to be somewhat superior in free space method and overall uniform pattern was observed. Therefore, by applying measurement techniques by stage and by frequency we could develop RAM in a more efficient way.

  • PDF

Investigation of Sound Absorption Ability of Acanthopanax senticosus Wastes

  • Eun-Suk, JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.404-413
    • /
    • 2022
  • This study aims to investigate the sound absorption ability of Acanthopanax senticosus wastes as an eco-friendly sound-absorbing material. The sound absorption coefficient was examined with different heights of A. senticosus wastes filling (40, 60, 80, and 100 mm) in impedance tubes. The sound absorption peaks shifted to a lower frequency as the height of A. senticosus wastes inside the tubes increased. The sound absorption ability at filling heights of 80 and 100 mm was obtained as 0.3M and 0.5M grades, respectively, based on KS F 3503. The results suggest that A. senticosus wastes exhibit good sound absorption ability and can therefore be used as an efficient, eco-friendly sound-absorbing material.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Efficacy and Reusability of Commercial Adsorbent for Isolation of Proanthocyanidins from Hot Water Extract of Pinus radiata Bark

  • Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.207-213
    • /
    • 2014
  • This study was carried out to investigate the feasibility and usefulness of a commercial synthetic adsorbent, Diaion HP 20, for the isolation of proanthocyanidins (PAs) from hot water extract (HWE) prepared from Pinus radiata bark. Most ultraviolet (UV) absorbing materials in HWE were adsorbed onto Diaion HP 20 and easily recovered by simple ethanol (EtOH) washing. More than 50% of the UV absorbing materials were adsorbed within 20 minutes, and the adsorption equilibrium was reached within 3 h. The recovered materials from Diaion HP 20 were mostly composed of PAs, but some monomeric flavonoids such as taxifolin and unidentified hydrophobic materials were also adsorbed. The impurities such as carbohydrates and inorganic materials contained in HWE were mostly removed by Diaion HP 20. The adsorption ability of the UV absorbing materials onto Diaion HP 20 was almost the same as the first cycle even after 14 times of repeating cycles of adsorption and desorption. The radical scavenging ability of the recovered materials from the adsorbent was slightly higher than that of the pure PAs prepared by Sephadex LH 20 from the same HWE.

Investigation of Sound Absorption Ability of Hinoki Cypress (Chamaecyparis obtusa) Cubes

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.365-374
    • /
    • 2022
  • Today, commercialized Hinoki cypress cubes are used for fragrance, humidification, and pillows in Korea. In this study, the sound absorption ability of Hinoki cypress (Chamaecyparis obtusa) cubes was examined. The three groups of Hinoki cypress cubes were prepared depending on their dimension (L: 9 × 9 × 9, M: 7 × 7 × 7, S: 4 × 4 × 4 mm). Their sound absorption coefficient was examined after filling 6, 8, 10, and 12 cm height in impedance tubes, respectively. Overall, the sound absorption ability depending on dimension was superior in the M group compared to the L and S groups. Also, as the filling height increased, the sound absorption capacity increased. In sum, noise reduction coefficients (NRC) of all Hinoki cypress cubes were 0.41-0.59. Thus, this research found that Hinoki cypress cubes have a sound-absorbing function.

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

Peanut Shells as an Environmentally Beneficial Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2022
  • This study investigated the prospect of using peanut shells as an alternative and green sound-absorbing material. The sound-absorption coefficients were determined after filling impedance tubes of 30, 60, and 90 mm in height with peanut shells. The sound-absorption ability increased as the filling height increased, showing noise reduction coefficient (NRCs) of 0.23, 0.43, and 0.54 for the 30-, 60-, and 90-mm heights, respectively. In addition, for sounds greater than 2,000 Hz, the average sound-absorption coefficient of peanut shells in the 60- and 90-mm heights was 0.9. In summary, peanut shells were found to have good sound-absorption properties comparable to or better than those of bamboo, sisal, jute, and wool, and this research suggests that peanut shells may be useful as an environmentally friendly sound-absorbing material.

Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용)

  • Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.183-191
    • /
    • 2009
  • Finite difference method using not general SSG (standard staggered grid) but RSG (rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation. But free surface boundary condition in finite difference method using RSG is easily solved with adding air layer or vacuum layer. Recently PML (Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML (convolutional Perfectly Matched Layer) that is more efficient than that of PML and CPML that don't use splitting of wave equation that should be adapted to PML was applied to FDM using RSG in this study. Frequency absorbing characteristic and energy absorbing ability in CPML layer were investigated and CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method. CPML method also diminished amplitude of waves in boundary layer of solid-liquid model very well.

Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material (흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어)

  • Kim, Dong-Young;Hong, Do-Kwan;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.