• Title/Summary/Keyword: Absorber Plate

Search Result 112, Processing Time 0.039 seconds

Output Characteristics of a Yb:YAG Laser Q-Switched by a Semiconductor Saturable Absorber and an Output Coupler Composed of a Polarizer and a Quarter-Wave Plate (편광기와 1/4 파장판으로 구성된 출력경과 반도체 포화 흡수체에 의해 Q-스위칭된 Yb:YAG 레이저 출력 특성 연구)

  • Ahan, Cheol Yong;Kim, Hyun Chul;Lim, Han Bum;Kim, Hyun Su
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.90-94
    • /
    • 2014
  • We propose a Yb:YAG laser Q-switched by a semiconductor saturable absorber and a laser output coupler composed of a polarizer and a quarter-wave plate, and we investigate the output characteristics of the proposed Q-switched laser. We show that the laser power can be varied by rotation of the quarter-wave plate.

Ultrasonic Welding Technology for Solar Thermal Collector

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.221-225
    • /
    • 2009
  • A solar thermal collector is a solar collector specifically intended to collect heat: that is, to absorb sunlight to provide heat. A flat plate is the most common type of solar thermal collector, and is usually used as a solar hot water panel to generate solar hot water. A flat plate collector consists basically of an insulated metal box with a glass or a plastic cover and a dark-colored copper absorber plate. Solar radiation is absorbed by the copper absorber plate and transferred to water that circulates through the collector in copper tubes. Ultrasonic welding is an industrial technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. In this study, we developed solar collector ultrasonic welding machine with digital controlled power supply and tested various welding conditions such as welding pressure, welding amplitude, welding speed. Welding speed was considered in 2~12m/min. The width of ultrasonic welds was increased with welding amplitude by 2.2~2.5mm. The fracture load of ultrasonic welds showed 20% higher than domestic products.

  • PDF

Thermal performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 내부형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.595-598
    • /
    • 2005
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam radiation) on thermal performance of the collector are studied. However the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector. These effects are considered in this study experimentally and numerically the accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material (공진분기회로를 이용한 평판의 진동제어)

  • Kim, Young-Ho;Park, Chul-Hue;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.881-886
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analyses are validated experimentally for simply-supported aluminum plates in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

  • PDF

Performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 흡수관 형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.56-65
    • /
    • 2006
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam irradiation) on thermal performance of the collector are studied. However, the solar irradiation consists of the beam irradiation as well as the diffuse irradiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector, These effects are considered in this study experimentally and numerically. The accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF

Operating Characteristics of 0.4 MW-Scale Gas Dispersion Type FGD Absorber (0.4 MW급 가스분사식 배연탈황 흡수탑의 운전 특성)

  • An, Hi-Soo;Kim, Ki-Hyoung;Park, Seung-Soo;Park, Kwang-Kyu;Kim, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • This study was carried out to investigate the effect of operating and design conditions of gas dispersion type of absorber on $SO_2$ removal efficiency. pH difference between upper and lower part of gas dispersing plate of absorber was 0.2, which was relatively low. This was supposed that recirculation capacity of absorbing liquid between froth zone and reaction zone of absorber be increased by oxidation air injection through liquid riser which acted as liquid pump. Test results showed that $SO_2$ removal efficiency was more sensitive than absorber ${\Delta}P$. High $SO_2$ removal even at lower pH resulted from very low concentration of $HSO_3^-$ ion in absorbing liquid because of direct supply of dissolved oxygen into froth zone. 96% of $SO_2$ removal efficiency was obtained under the condition of absorber pH 5.2, flue gas flow rate of $1,530\;Nm^3/hr$, inlet $SO_2$ concentration of 800 ppm, absorber ${\Delta}P$ of 250mmAq. The following equation by a multiple linear regression was obtained to describe the relationship between $SO_2$ removal and operating variables. $$f=1-{\exp}(-1.3939+1.060pH+0.0139{\Delta}P-0.00267G-0.000064SO_2Conc.),\;R^2=0.9719$$

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Theoretical & Experimental Study on the Air-Type Nonmetallic Collectors. (비금속 공기식 집열기의 이론 분석 및 성능실험)

  • Lee, Dong-Won;Lee, Jong-Ho
    • Solar Energy
    • /
    • v.6 no.1
    • /
    • pp.77-86
    • /
    • 1986
  • In this study, theoretical & Experiemental Analysis on three different air type solar collectors (One of metallic material: AI, two of non-metallic materials; GIWA & Slate) are performed. The results of three different collectors show the similiar performance in spite of different absorber material. The results of experiment are coincided with the theoretical results, and thus it is possible to estimate the performance of collector for the other experiment measuring variables. As a result, the thermal conductivity has no influence on the collector efficiency, because air, heat transfer medium, flows through over the whole surface of absorber plate.

  • PDF

Thermal Performance Variations of Glass Evacuated Tube Solar Collectors Depending on the Absorber Shape and the Incidence Angle of Solar Ray (흡수관 형상과 일사 각도에 따른 진공관형 태양열 집열기의 성능 변화)

  • Kim Yong;Seo Tae-Beom;Kang Yong-Heack
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.659-668
    • /
    • 2005
  • The thermal performances of glass evacuated tube solar collectors are numerically investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are numerically investigated. Dealing with only collecting tube, the effects of not only the shape of the absorber tube but also the incidence angle of solar irradiation on the thermal performance of the collector are studied because the energy obtained by the absorber can be varied according to the incidence angle of solar radiation. However, the solar irradiation consists of the beam radiation as well as the diffuse radiation. Also, in actual system, the interference of solar irradiation and heat transfer interaction between the tubes should be considered. Therefore, this study considered these effects is carried out experimentally and numerically. The accuracy of the numerical model is verified by experiments. The result shows that the thermal performance of the absorber used a plate fin and U-tube is about $25\%$ better than those of the other models.

Design of Wave Absorber for a Perfectly Conduction Sphere Using the Eigenfunction Series Solution form a Coated Sphere (코팅된 구의 고유함수 해를 이용한 완전도체구의 전파흡수체의 설계)

  • 심재은;전중창;김효태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.18-24
    • /
    • 1999
  • The design method of a wave absorber for a perfectly conducting sphere is presented. The backscattered field from a coated sphere can be represented as the sum of the reflected field and the creeping wave. The wave absorber for a curved surface has been designed from that the reflection coefficient of the reflected field is zero. For the design of wave absorber for a small sized conducting sphere, the creeping wave should be considered as well as the reflected field. The perfect absorbing conditions are numerically searched using the Newton-Raphson method from the backscattered field of the eigenfunction series solution from a coated sphere. The wave absorber designed by this method exhibits a superior performance of absorption to that designed from the plate type absorbing condition.

  • PDF