• 제목/요약/키워드: Absorbent polymer

검색결과 50건 처리시간 0.032초

일회용 폐기저귀에서 양액 추출 방안 (Method for nutrient solution extraction from used diposed diapers)

  • 노벨 발리자;한세희
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.34-41
    • /
    • 2020
  • Used disposable diapers have been considered for a long time as a type of waste difficult to recycle and valorize due to their composite nature including plastic, cellulose pulp, a super absorbent polymer and either urine, feces or both. Therefore, the fate of disposed diapers often is either incineration or landfill burial which both have various adverse environmental impacts. However, used disposable diapers contain nutrients: cellulose is an organic matter while urine and feces contain non negligible amounts of nitrogen, phosphorus and potassium which are primary nutrients included in most chemical fertilizers used in agriculture. In a scope of waste recycling and valorization, this study focuses on developing a method to achieve nutrient solution extraction from used disposable diapers. The experiment essentially consists in shredding the diapers and letting them macerate in solutions of sodium hydroxide with various concentrations to allow breaking down of the cellulose and super absorbent polymer and release of urine and feces before sterilizing the solutions in an autoclave to remove potential coliform bacteria. At the end of the experiment, a set of parameters is measured for the final solution to identify concentrations of nutrients as well as presence or absence of harmful substances. Results are discussed and directions for future studies are suggested, which include mechanization of the diapers shredding process or added aeration to enhance nitrification and absorption of extracted nutrients from plants.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

Evaluation of New Selective Molecularly Imprinted Polymers for the Extraction of Resveratrol from Polygonum Cuspidatum

  • Cao Hui;Xiao Jian Bo;Xu Ming
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.324-330
    • /
    • 2006
  • Four different molecularly imprinted polymers (MIPs) were prepared using resveratrol as the template, methacrylic acid (MAA) or acrylamide (AA) as functional monomers, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and thermo- or photo-induced polymerization. The ability of the different polymers to rebind selectively not only the template but also other phenols was evaluated. In parallel, the influence of the different templates and functional monomers used during polymer syntheses on the performance of the obtained MIPs was also studied through different rebinding experiments. The binding ability and selectivity of the polymer were studied by static balance method and Scatchard analysis. It was concluded that AA-based polymer by photo-induced polymerization presents the best properties to be used as a selective absorbent for the extraction of resveratrol.

다중적층 소재 레이저용접 인자별 열영향 해석 (Parametric Analysis of Thermal Effects on Multi Layered Laser Welding)

  • 최세훈;최해운
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.18-24
    • /
    • 2021
  • Polymers, polymer compounds, are very moldable at low temperatures and have good strength against weight, and hence, are often used in the interior and exterior materials of cars. Owing to the increasing environmental problems, emission regulations have become stricter, which has increased the use of lightweight polymers as substitutes for metal materials. Therefore, as the use of polymer increases, extensive research is being conducted on the bonding technology of polymers, such as polyurethane and epoxy. However, the increased cost and environmental pollution by adhesives caused by the polymer manufacturing plant depend on the chemical composition or the manufacturer's mix ratio. To compensate for this issue, a laser beam is irradiated through a highly permeable polymer (PC) placed on top of an absorbent polymer (ABS) to transfer the laser output to the ABS polymer and fuse them at the interface. Moreover, enabling laser penetrating bonding by placing a stainless steel wire mesh between the two polymers can achieve improved bonding strength compared to conventional heterogeneous polymer bonding.

팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화 (Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities)

  • 김영선;김태웅;김윤섭;나양호;이긍주
    • 한국환경농학회지
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합 (Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars)

  • 황기섭;정명근;장석수;정용욱;이승한;하기룡
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.434-441
    • /
    • 2010
  • 콘크리트 제조 시 사용되는 잉여수를 흡수하기 위하여 흡수성의 sodium polyacrylate(PAANa)를 역유화중합법으로 제조하였다. 연속상은 paraffin liquid를 사용하였으며 acrylic acid(AA)는 NaOH로 중화시켜 사용하였다. 가교제는 N,N'-methylene bisacrylamide(MBA)를 사용하였고 첨가량을 다르게 하여 중합을 실시하였다. 중합된 PAANa들의 입자크기 분석을 실시하고 이들이 탈이온수, 시멘트 포화수용액 및 $Ca(OH)_2$ 수용액에서의 팽윤비를 측정하였다. $Ca^{2+}$ 이온과 PAANa의 상호작용을 관찰하기 위하여 FTIR spectroscopy 분석을 실시하였다. 중합된 PAANa를 포틀랜드 시멘트에 1 wt% 혼합 후 시멘트 모르타르 공시체의 압축강도와 휨강도를 측정한 결과, AA에 대하여 0.15 mol%의 MBA를 첨가하여 중합한 PAANa를 첨가하여 제조한 PAANa-시멘트가 일반 포틀랜드 시멘트와 비교하여 압축강도 약 30% 및 휨강도 약 10%가 각각 증가함을 확인하였다.

고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향 (Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC))

  • 강성훈;문주혁;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권3호
    • /
    • pp.317-328
    • /
    • 2016
  • 이 연구의 목적은 내부양생을 위한 고흡수성 수지(SAP)의 혼입이 초고성능 콘크리트(UHPC)의 수화특성, 자기수축, 내구성 및 역학적 특성에 미치는 영향을 알아보는 것이다. 이를 위해 입도범위는 유사하지만 화학적 구조가 다른 2 종류의 SAP이 선택되었고, 이러한 SAP이 혼입된 UHPC의 성능이 실험을 통해 평가되었다. 평가결과는 SAP의 종류, 그리고 혼입 여부에 따라 비교되었다. 수화반응성과 수화생성물 확인을 위해 등온열량계 및 XRD를 이용한 실험이 각각 진행되었고, 이 실험을 통해 초기 재령일에서 수화반응성 및 장기 재령일에서의 수화생성물을 확인하였다. UHPC의 수축저감제로서 SAP의 적용 가능성을 확인하기 위해 자기수축 변형율, 압축강도 및 염분침투성을 측정하였다. 또한, SEM 이미지 촬영을 통해 SAP이 UHPC 내부에서 형성한 공극을 실제로 확인하고 분석하였다. 이러한 분석 및 평가결과를 통해, SAP을 이용한 내부양생은 역학적 성능과 내구성 저하 없이 UHPC의 자기수축을 저감시킬 수 있다는 결론을 내렸다. 실험에 사용된 두 종류의 SAP 중에서, UHPC 내부에서 흡수력이 더 우수한 SAP_AM이 SAP_AA 보다 수축저감성능 뿐만 아니라, 장기적인 수화반응성, 압축강도, 염분침투 저항력에서도 성능이 더 우수한 것으로 나타났다.

Agar 그래프트 폴리아크릴산 겔의 흡수능 최적화 (Optimization of the Water Absorption by Crosslinked Agar-g-Poly(acrylic acid))

  • Wuttisela, Karntarat;Panijpan, Bhinyo;Triampo, Wannapong;Triampo, Darapond
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.537-543
    • /
    • 2008
  • Crosslinked agar-g-poly(acrylic acid) (x-agar-g-PAA) super absorbent with a water absorbency ($Q_{H2O}$) of approximately 660 g/g was synthesized by the copolymerization of agar with an acrylic acid monomer. KPS and MBA were used as the initiator and crosslinker, respectively. Grafting was performed in air. Infrared spectroscopy was used to identify the product of copolymerization. The optimum conditions to synthesize the x-agar-g-PAA superabsorbent were 0.1 g of agar, 0.1 g of the KPS initiator, for 15 min; 50% AA monomer, 0.005 g of the MBA crosslinker, for a propagation time of 5 min; and 1 M NaOH for 15 min to allow for saponification. The reaction temperature was $80{^\circ}C$.

파일럿 지료 조성설비를 이용한 폐 일회용 기저귀의 유용성분 회수에 관한 연구 (Studies on the Recovery of Useful Materials from Disposable Diaper Waste using Pilot Stock Preparation Units)

  • 이태주;남윤석;박정은;조준형;류정용;이호선
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.66-75
    • /
    • 2015
  • Disposable diaper waste is consisted of plastic, fiber, and SAP (Super Absorbent Polymer). They are valuable to be used as raw materials of other products including plastic blocks and pulp mold. Nevertheless, disposable diaper waste have been disposed by landfill and incineration without recycling. Due to strict environmental regulations it is necessary to develop fractionation technique to recycle the disposable diaper waste. In this study the fractionation technique using pilot-scale stock preparation units was investigated. Process for separation of plastic and fibers from disposable diaper waste was composed by the combination of pilot-scale pulper, drum screen, screen and cleaner. Recovery rate of plastics and fiber was checked according to the various operating conditions. In drum screen, recovery rate of plastic was high when the cut size of disposable diaper waste was $5cm{\times}5cm$. The highest recovery rate of fiber was achieved with 0.3 mm slot screen. It is important to control the neutral state of SAP for improvement of recovery rate of fiber since SAP can be swelled easily in water. Therefore SAP can be controlled efficiently by the addition of calcium chloride into the pulper. Consequently recovery rates of plastics and fibers were over 90 and 80% under the optimum pilot operating conditions.

고흡수성 합성고분자가 홍화 및 아마란스 새싹의 발아 및 생육에 미치는 영향 (Effect of Super Absorbent Polymer on Germination and Growth of Safflower and Amaranth Sprouts)

  • 장성남;이가운;이승만;윤재길;신현석;손기호
    • 생물환경조절학회지
    • /
    • 제30권1호
    • /
    • pp.37-45
    • /
    • 2021
  • 본 연구는 식물공장에서 고흡수성 합성고분자(Super absorbent polymer; SAP)를 수경재배에서 배지로서의 활용가능성을 구명하고자 홍화 및 아마란스 새싹의 생육특성과 페놀함량 및 항산화도를 평가하였다. 대조구는 새싹 재배기(19 × 14 × 9cm, W × D × L)에 거즈를 깔고, 처리구에는 거즈 위에 SAP를 추가하여 비교 분석하였다. 홍화 새싹 종자를 30℃의 증류수에 5시간 동안침지한 뒤, 새싹 재배기에 파종 후 식물생장상에서 재배하였다. 식물생장상의 내부 온도는 25 ± 1℃, 습도는 70 ± 4%로 유지되었고 광조건은 35 ± 6μmol·m-2·s-1(광주기 12h)로 설정하였다. 아마란스 새싹은 새싹 재배기에 파종 후 식물생장상 내부 온도 25 ± 2℃, 습도는 70 ± 5%, 광조건은 188 ± 10μmol·m-2·s-1(광주기 16h)로 설정하였다. SAP의 기본적인 특성으로 물리/화학적 분석과 홍화 및 아마란스의 발아율과 생육특성 및 기능성 물질을 분석하였다. 홍화는 발아율, 생육 및 기능성 물질에서 처리구와 대조구간 차이가 없었으나, 아마란스는 생육 측면에서는 대조구와 차이가 없었으나 발아율, 건물중, 페놀함량 및 항산화도에서 처리구가 각각 1.16배, 1.16배, 1.40배, 1.12배의 높은 결과를 보였다. 결과적으로, 이번 연구를 통해 식물공장에서 SAP을 활용한 새싹재배가 가능할 것으로 판단하였으며 추후 SAP가 식물 생리적으로 작용하는 연구가 필요할 것으로 사료된다.