• Title/Summary/Keyword: Absorbed dose

Search Result 571, Processing Time 0.019 seconds

The Evaluation of Multiplane-Parallel Chamber Using Crystal Plate as Ionization Medium for Therapeutic Radiation Beams

  • Young W. Vahc;Park, Kyung R.;Kim, Sookil;Chul W. Joh;Kim, Tae H.
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.29-35
    • /
    • 1998
  • There has been necessity of an air free ionization chamber using the gold-crystal-aluminium plates, henceforth called the crystal chamber. The crystal chamber formed of parallel plates is very small in size and has more response for absorbed dose of therapeutic radiation beams. The gold plate on the crystal facing the photon and electron beam acts as an intensifier of signals and crystal plate as an ionization medium respectively. Both the copper guard ring and the aluminum collecting electrode are connected to an electrometer. Using high energy photon (6, 15 MV) and electron (9, 12, 15, 18 MeV) beams, the responses of the crystal chamber are evaluated against a PTW Farmer-type chamber at a field size of 10${\times}$10cm$^2$ and 100 cm SSD. The responses of crystal chamber for therapeutic radiation electron and photon beams are greater in magnitude by several order than Farmer. The crystal chamber has good linearity without correction factor C$\_$t,p/ with respect to the signals, a reading reproduction with good accuracy and precision less than 0.5%, and has other useful functions in measuring radiation beams.

  • PDF

Internal Radiation Dosimetry using Nuclear Medicine Imaging in Radionuclide Therapy (방사성핵종 이용 치료에서 핵의학영상을 이용한 흡수선량평가)

  • Kim, Kyeong-Min;Byun, Byun-Hyun;Cheon, Gi-Jeong;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of Internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplish by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide change of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. in this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered In real practice.

Energy Dependancy of the Polyethylene Terephthalate Film for Radiation Detector (방사선 검출기용 PET 박막의 에너지 의존성)

  • Back, Geum-Mun;Kim, Keon-Chung;Kim, Wang-Gon;Hong, Jin-Woong;Yi, Byong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.71-74
    • /
    • 2002
  • Currently small and accurate dosimeters are on the rise. In this study, the feasibility and energy dependency of the electret dosimeter that made of PET (polyethylene terephtalate) were observed by irradiating 4, 6, 15 MV photon beams from the clinical linear accelerator to develop a dosimeter for the clinical field. $10{\times}10cm$ field size of the photon beams were irradiated to the electret dosimeter where the 2.5 cm depth in the polystylene phantom from 100 cm SSD, while 300 DCV was applied to the electret dosimeter. The result showed that the absorbed dose was proportional to the charge linearly, and the volume of a dosimeter could be reduced and the signals were high enough. According to this study, it was found that the polymer electret detector could be produced as a large quantity with a small cost and showed the feasibility of a realtime measurement.

  • PDF

Bioactivities of Citrus (Citrus unshiu) Peel Extracts Subjected to Different Extraction Conditions, Storage Temperatures, and Irradiation

  • Chawla, S. P.;Jo, C.;Kang, H. J.;Kim, M. J.;Byun, M. W.
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.349-355
    • /
    • 2003
  • Effects of extraction conditions, gamma-irradiation and storage conditions on bioactivities of Citrus (Citrus unshiu) peel extract were investigated. The Hunter color $L^{*}$- and $a^{*}$-values of the extract increased but $b^{*}$-value decreased with an increase in absorbed irradiation dose. DPPH radical scavenging, tyrosinase inhibition and nitrite scavenging activities were not affected by irradiation but reduced by increased storage time. Nitrite scavenging activity of the extract was the highest at pH 1.2 followed by pH 4.2 and 6.0 and not changed by storage. Results indicated that there is potential for using citrus peel byproducts as a bioactive ingredient, and that gamma irradiation brightens the color of the extract without adversely altering its biological activity.ity.

Studies on the Absorption and Excretion of Ginsenosldes (인삼사포인의 흡수 및 배설에 관한 연구)

  • Han, Byeong-Hun;Park, Man-Gi;Lee, Eun-Sil
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.112-116
    • /
    • 1991
  • The metabolic fate of ginsenosides including gastrointestinat absorption, organ distribution, excretion and metabolism in liver was investigated by tracer studies using the radio-labeled ginsenosides. 3H-ginsenosides were shown to be absorbed from the mouse digestive tract and then to be excreted rapidly into urine and/or bile. Bile juice was concluded to play a significant role in absorption of ginsenosides. The total concentration of radioactivity persisted in tissues 24 hrs after oral administration was less than 1.3% of the administered dose and Rbl showed the highest value. The concentrations of radioactivity were relatively high in the liver and kidney. After administration of Rbl radioactivity was detected in the brain. After oral administration of 8H-ginsenosides, major component excreted into urine was found to be the intact ginsenosides and decomposed and/or metabolized products were found in GIT in the case of Rbl. 3H-ginsenoside Rbl was shown to be metabolized in the liver and the metabolite was suggested to be an acylated compound of Rbl by a certain organic acid.

  • PDF

An Approximation Method for the Estimation of Exposed dose due to Gamma - rays from Radioactive Materials dispersed to the Atmoshere (대기로 확산된 방사성물질로부터 방출되는 감마선에 의한 피폭선량을 계산하기 위한 근사화 방법)

  • Kim, T.W.;Park, C.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 1990
  • The dispersing model of radioactive plume in the atmosphere was assumed to form finite ellipseshaped volumes rather than a single plume and gamma absorbed doses from the plume were computed using the proposed model. The results obtained were compared with those computed by the Gaussian plume and the circular approximation models. The results computed by the proposed ellipse-shaped approximation model were close to those by the Gaussian plume model. and more accurate than those by the circular approximation model. The computing time for the proposed approximation model was one fortieth of that for the Gaussian plume model.

  • PDF

Changes of Allergenicity and Conformational Structure of Egg Ovomucoid by Gamma Irradiation in the Basic Condition

  • Kang, Kun-Og;Lee, Ju-Woon;Jo, Cheo-Run;Yook, Hong-Sun;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.52-56
    • /
    • 2002
  • This study was conducted to evaluate the possibility of gamma radiation for reducing egg allergies through the observation of conformational and allergenic changes of egg ovomucoid (OM) in basic pH conditions. An OM solution of 2.0 mg/mL was individually prepared with different pH conditions, pH 7.0, 9.0 or 10.0, and was irradiated with the absorbed dose of 10 kGy. Irradiated OM solutions were tested by Ci-ELISA formatted with egg-hypersensitive patients'IgE. Binding abilities of IgE to OM in irradiated solution decreased with the increase of pH. Turbidity of the solution highly increased by irradiation and the increase of pH. A yellowish color was observed in the irradiated OM solution of basic condition. Coagulation of OM by irradiation decreased with the increase of pH, when observed by SDS-PAGE.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

Measurement of low energy beta radiation from Ni-63 by using peeled-off Gafchromic EBT3 film

  • Ji, Wanook;Kim, Jong-Bum;Kim, Jin-Joo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3811-3815
    • /
    • 2022
  • Ni-63 is pure beta source which emits low energy beta particles. The Ni-63 sources were fabricated to develop the beta-voltaic battery which converts decay energy into electrical energy for power generation. Activity distribution of the source was important factor of power producibility of the beta-voltaic battery. Liquid scintillation counter widely used for measurement of low energy beta emitters was not suitable to measure activity distribution. In this study, we used the peeled-off Gafchromic™ EBT3 film to measure the activity distribution of the Ni-63 source. Absorbed dose was increased proportionally to the source activity and exposure duration. The low energy beta particles could transport the energy into the active layer without the polyester protective layer. Also, Activity distribution was measured by using the peeled-off EBT3 film. Two-dimensional dosimetric distribution was suitable to measure the activity distribution. To use the peeled-off EBT3 film is user-friendly and cost-effective method for quality assurance of the Ni-63 sources for the beta-voltaic battery.

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.