• Title/Summary/Keyword: Absorbed dose

Search Result 572, Processing Time 0.026 seconds

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

The Quotient of Absorbed Dose and the Collision Part of Kerma for Photon Beams

  • Jun, Jae-Shik;Loevinger, Robert
    • Journal of Radiation Protection and Research
    • /
    • v.5 no.1
    • /
    • pp.7-10
    • /
    • 1980
  • With the conceptual definition of the quotient(${\beta}$) of absorbed dose and the collision part of kerma for photon beams, the procedure of computing ${\beta}$ is briefly described. A series of calculations of ${\beta}$ was carried out for photons of 0.4, 0.5, 1 and 2 MeV in polystyrene, carbon, air and aluminum. Resultant values are tabulated and evaluated.

  • PDF

Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film (DICOM 파일을 사용한 Geant4 시뮬레이션과 Gafchromic EBT2 필름에 의한 인체 내 흡수선량 비교 연구)

  • Mo, Eun-Hui;Lee, Sang-Ho;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Monte Carlo method has been known as the most accurate method for calculating absorbed dose in the human body, and an anthropomorphic phantom has been mainly used as a method of simulating internal organs for using such a calculation method. However, various efforts are made to extract data on several internal organs in the human body directly from CT DICOM files in recent Monte Carlo calculation using Geant4 code and to use by converting them into the geometry necessary for simulation. Such a function makes it possible to calculate the internal absorbed dose accurately while duplicating the actual human anatomical structure. Thus, this study calculated the absorbed dose in the human body by using Geant4 associating with DICOM files, and aimed to confirm the usefulness by compare the result with the measured dose using a Gafchromic EBT2 film. This study compared the dose calculated using simulation and the measured dose in beam central axis using the EBT2 film. The results showed that the range of difference was an average of 3.75% except for a build-up region, in which the dose rapidly changed from skin surface to the depth of maximum dose. In addition, this study made it easy to confirm the target absorbed dose by internal organ and organ through the output of the calculated value of dose by CT slice and the dose value of each voxel in each slice. Thus, the method that outputs dose value by slice and voxel through the use of CT DICOM, which is actual image data of human body, instead of the anthropomorphic phantom enables accurate dose calculations of various regions. Therefore, it is considered that it will be useful for dose calculation of radiotherapy planning system in the future. Moreover, it is applicable for currently-used several energy ranges in current use, so it is considered that it will be effectively used in order to check the radiation absorbed dose in the human body.

Reduction of Electron Contamination in Photon Beam by electron Filter in 6MV Linear Accelerator (6MV 선형가속기에서 Al/Cu에 관한 여과판 사용시 전자오염 감소에 관한 연구)

  • Lee, Cheol-Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.41-54
    • /
    • 1996
  • The secondary electrons developed by interaction between primary beam and a tray mounted for blocks in Megavoltage irradiation result in excess soft radiation dose to the surface layer. To reduce this electron contamination, electron filters have been used to be attached under a tray. Various filters with Cu and Al plates in six different thickness and Cu/Al combined plates in 3 different thickness were tested to measure the reduction rate of secondary electron contamination to the surface layer. The measurement to find optimal filter was performed on 6MV linear accelerator in $10 cm{\times}10 cm$ field size and fixed 78.5cm source to measurement points distance from surface to maximum build up point in 2mm intervals. The result was analyzed as the ratio of measured doses with using filters, to standard doses of measured open beam. The result of this study was fellowing : 1. The contaminated low energy radiation were mainly produced by blocking tray. 2. The surface absorbed dose was slowly increased by increasing irradiation field size but rapidly increased at field size above $15cm{\times}15cm$. 3. Al plate upto 2.5mm thickness used as a filter was found to be inadequate due to the failure of reduction of the surface absorbed dose below doses of the under surface upto the maximal build up. Cu 0.5mm plate and Cu 0.28mm/A1 1.5mm compound plate were found to be optimal filters. 4. By using these 2 filters, the absorbed dose to the surface were effectively reduced $5.5\%$ in field size $4cm{\times}4cm,\;11.3\%$ in field size $10cm{\times}10cm,\;22.3\%$ in field size $25cm{\times}25cm$. 5. In field size $10cm{\times}10cm$, the absorbed dose to the surface of irradiation was reduced by setting TSD 20cm at least,. but effective and enough dose reduction could be achieved by setting TSD 30cm as 2 optimal filters used. 6. More surface dose absorbed at TSD less than 7.4cm with a tray and filters together indicated that soft radiation was also developed by filters. 7. The variation of PDD by the different size of irradiation field was minimal as 2 optimal filters used. There was also not different in variation of PDD according to using any of two different filters. 8. PDD was not effected either by various TSD or by using the different filter among two.

  • PDF

Proficiency Test for the Dosimetry Audit Service Provider

  • Chul-Young Yi;In Jung Kim;Jong In Park;Yun Ho Kim;Young Min Seong
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.72-79
    • /
    • 2022
  • Purpose: The proficiency test was conducted to assess the performance of the dosimetry audit service provider in the readout practice of the dose delivered to patients in medical institutions. Methods: A certain amount of the absorbed dose to water for the high-energy X-ray from the medical linear accelerator (LINAC) installed in the Korea Research Institute of Standards and Science (KRISS) was delivered to the postal dose audit package given by the dosimetry audit service provider, in which the radio-photoluminescence (RPL) glass dosimeters were mounted. The dosimetry audit service provider read the RPL glass dosimeters and sent the readout dose value with its uncertainty to KRISS. The performance of the dosimetry audit service provider was evaluated based on the En number given in ISO/IEC 17043:2010. Results: The evaluated En number was -0.954. Based on the ISO/IEC 17043, the performance of the dosimetry service provider is "satisfactory." Conclusions: As part of the conformity assessment, the KRISS performed the proficiency test over the postal dose audit practice run by the dosimetry audit service provider. The proficiency test is in line with confirming the traceability of the medical institutions to the primary standard of absorbed dose to the water of the KRISS and ensuring the confidence of the dosimetry audit service provider.

Analysis of Photon Characteristics and Absorbed Dose with Cone Beam Computed Tomography (CBCT) using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 광자선 특성 및 선량 분석)

  • Kim, Jong-Bo;Kim, Jung-Hoon;Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The cone beam computed tomography(CBCT) which can acquire 3-dimensions images is widely used for confirmation of patient position before radiation therapy. In this study, through the simulation using the Monte Carlo technique, we will analyze the exposure dose by cone beam computed tomography and present the standardized data. For the experiment, MCNPX(ver. 2.5.0) was used and the photon beam spectrum was analyzed after Cone beam was simulated. As a result of analyzing the photon beam spectrum, the average energy ranged from 25.7 to 37.6 keV at the tube voltage of 80 ~ 120 kVp and the characteristic X-ray energy was 9, 60, 68 and 70 keV. As a result of using the water phantom, the percentage depth dose was measured, and the maximum dose appeared on the surface and decreased with depth. The absorbed dose also decreased as the depth increased. The absorbed dose of the whole phantom was 9.7 ~ 18.7 mGy. This is a dose which accounts for 0.2% of about 10 Gy, which is generally used for radiation therapy per week, which is not expected to have a significant effect on the treatment effect. However, it should not be overlooked even if it is small compared with prescription dose.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

A Study of the Patient Dose in Chest Radiography (흉부(胸部) X선검사시(線檢査時) 환자(患者)의 피폭선양(被曝線量)에 대(對)한 연구(硏究))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 1990
  • A study was carried out to investigate the technical factors and the patient dose (entrance and absorbed dose) in chest P-A radiography based on the 86 hospitals in Seoul from July 1 to July 30, 1989. As a result of this study, main finding were as follow : 1. 51.2% of the surveyed hospitals made use of $60{\sim}69\;kVp$ as tube voltage in chest radiography 2. The majority of the surveyed(88.3%) have the use of $6{\sim}20\;mAs$ as tube current-time. 3. Percentage absorbed doses in patient were showed more than 90 percent in every tube voltage. 4. Object densities were all much the same in all tube voltages. 5. 48.8% of surveyed entrance doses ranged from $100\;{\mu}Sv$ to $190\;{mu}Sv$, and the mean dose was $158\;{\mu}Sv$.

  • PDF

Evaluation of the Lens Absorbed Dose of MVCT and kV-CBCT Use for IMRT to the Nasopharyngeal Cancer Patient (비인두암 환자에 대한 세기조절 방사선치료 시 이용되는 MVCT와 kV-CBCT의 수정체 흡수선량 평가)

  • Choi, Jae Won;Kim, Cheol Chong;Park, Su Yeon;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • Purpose: Quantitative comparative evaluation of the difference in eye lens absorbed dose when measured by MVCT and kV-CBCT, though such a dose was not included in the original IMRT treatment plan for the nasopharyngeal cancer patient. Materials and Methods: We used CT (Lightspeed Ultra 16, General Electric, USA) against an Anderson rando phantom (Alderson Research Laboratories Inc, USA) and established the plan for tomotherapy treatment (Tomotherapy, Inc, USA) and linear accelerator treatment (Pinnacle 8.0, Philips Medicle System) for the achieved CT images on the same condition with the nasopharyngeal cancer patient treatment plan. Then, align the ther-moluminescence dosimeter (TLD100 Harshaw, USA) with the eye lens, shot the lens with Tomotherapy MVCT under 3 conditions (Fine, Normal, and Coarse), and shot both lenses with kV-CBCT under 2 conditions (Low Dose Head and Standard Dose Head) 3 times each. Results: When we analyzed the eye lens absorbed dose according to MVCT and kV-CBCT images by using both Tomotherapy and Pinacle 8.0, we achieved the following result; According to Tomotherapy MVCT, RT 0.8257 cGy in the Coarse mode, LT 0.8137 cGy, RT 1.089 cGy and LT 1.188 cGy in the Normal mode, and RT 2.154 cGy and LT 2.082 cGy in the Fine mode. According to Pinacle 8.0 kV-CBCT, RT 0.2875 cGy and LT 0.1676 cGy in the Standard Dose mode and RT 0.1648 cGy and LT 0.1212 cGy in the Low-Dose mode. In short, the MVCT result was significantly different from that of kV-CBCT, up to 20 times. Conclusion: We think kV-CBCT is more effective for reducing the amount of radiation which a patient is receiving during intensity modulated radiation treatment for other purposes than treatment than MVCT, when we consider the absorbed dose only from the viewpoint of image-guided radiation therapy. Besides, we understood the amount of radiation is too sensitive to the shooting condition, even when we use the same equipment.

  • PDF

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF