• 제목/요약/키워드: Absorbed Power

검색결과 191건 처리시간 0.021초

Chip Impedance Evaluation Method for UHF RFID Transponder ICs over Absorbed Input Power

  • Yang, Jeen-Mo;Yeo, Jun-Ho
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.969-971
    • /
    • 2010
  • Based on a de-embedding technique, a new method is proposed which is capable of evaluating chip impedance behavior over absorbed power in flip-chip bonded UHF radio frequency identification transponder ICs. For the de-embedding, four compact co-planar test fixtures, an equivalent circuit for the fixtures, and a parameter extraction procedure for the circuit are developed. The fixtures are designed such that the chip can absorb as much power as possible from a power source without radiating appreciable power. Experimental results show that the proposed modeling method is accurate and produces reliable chip impedance values related with absorbed power.

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

The Study on the Power Consumption for Glass Melting by Cold Crucible Melter (CCM용융에 대한 유리용융 조건 연구)

  • Jin, Hyun-Joo;Lee, Kyu-Ho;Jung, Young-Jae;Bae, So-Young;Kim, Tae-Ho;Jung, Young-Joon;Kim, Young-Seok;Lee, Kang-Taek;Ryu, Bong-Ki
    • Korean Journal of Metals and Materials
    • /
    • 제46권2호
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

A study on the optimal design of automobile suspension system (자동차 懸架裝置의 최적설계에 관한 연구)

  • Kim, Ho-Ryong;Choi, Sub
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제11권3호
    • /
    • pp.437-443
    • /
    • 1987
  • An optimal design to improve the ride quality was performed with the time and frequency domain analysis based on both of deterministic and random road profiles. The objective function is established to minimize the absorbed power while the constraints are taken so as to satisfy the condition for the stability of vehicle. The result of the optimal design shows that the rms for the acceleration of a driver and his seat is within the critical values for the ride quality from ISO. The optimal values obtained show that the maximum absolute acceleration of the driver and his seat has significantly been reduced and the reference limits on the relative displacement have satisfied their feasibility. As the optimal value according to a specific speed is the results from the optimization process, a global optimum value should be determined to be the one which gives th minimum values of total sum of absorbed power with respect to various speed.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제10권1호
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

Analysis of Transmission Infrared Laser Bonding for Polymer Micro Devices (폴리머 마이크로 장치에 대한 레이저 투과 마이크로 접합)

  • Kim, Joo-Han;Shin, Ki-Hoon
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.55-60
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted into heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated. At the wavelength of 1100nm $87.5\%$ of incident laser energy was used for bonding process from the calculation. A heat transfer model was applied for obtaining the transient temperature profile. It was found that with the power of 29.5 mW, the interface begins to melt and bond each other in 3 sec and it is in a good agreement with experiment results. The transmission IR laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip applications.

Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources (조직 표면에서의 베타선 흡수선량 측정)

  • Hah, Suck-Ho;Kim, Jeong-Mook;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • 제16권2호
    • /
    • pp.17-26
    • /
    • 1991
  • Beta ray $(^{90}Sr+^{90}Y)$ absorbed dose at tissue surface was measured from the distance of 30cm by use of extrapolation chamber. In the measurement, following factors were considered: effective area of collecting electrode, polarity effect, ion recombination and window attenuation. The measured absorbed dose rate at tissue surface was $1.493{\mu}Gy/sec$ with ${\pm}2.9%$.

  • PDF

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.