• 제목/요약/키워드: Absolute phase

검색결과 253건 처리시간 0.024초

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 CuO 첨가의 효과 (Effect of CuO Addition on the Microstructural and Electrical Properties of Ni-Mn Oxide NTC Thermistor)

  • 김경민;이성갑;이동진;박미리
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.337-341
    • /
    • 2016
  • In this study, $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ (x=0~0.25) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $ Ni_{0.79}(Mn_{2.21-x}Cu_x)O_4$ specimens with variation of CuO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with cubic spinel phase. The relationship between ln ${\rho}$ and the reciprocal of absolute temperature(1/T) for the NTC thermistors was shown linearity, which exhibited the typical NTC thermistor properties. With increasing the amount of CuO, resistivity at room temperature, B-value, and temperature coefficient resistance decreased.

가스크로마토그라피/질량분석기에 의한 모발중 대마성분 분석 (Analysis of $\triangle^9$-Tetrahydrocannabinol and 11-nor-9-carboxytetrahydrocannabinol in Hair by Gas Chromatography/Mass Spectrometry)

  • 양원경;한은영;박용훈;임미애;정희선
    • 약학회지
    • /
    • 제48권3호
    • /
    • pp.207-212
    • /
    • 2004
  • An analytic method was developed for the quantitation of $\Delta$$^{9}-$ tetrahydrocannabinol (THC) and 11-nor-9-carboxy THC (THC-COOH) in human hair. After hair samples were pulverized using Freezer Mill, deuterated internal standards were added and digested in 1 N NaOH at $100^{\circ}C$ water bath for 30 min. Digest solutions were extracted by 5 ml hexane:ethyl acetate (90:10) after acidification with acetic acid. The organic phase was evaporated under N 2 and derivatized by BSTFA (with 1% TMCS) at $85^{\circ}C$ for 45 min. The derivatized solution was separated on HP-5MS column ($30m{\times}0.25mm{\times}0.25mm$) and detected using EI-GC-MS with selective ion monitoring mode. The assay of calibration was ranged from 5 to 100 ng/50 mg hair ($r^2$>0.99) for THC and THC-COOH. Within and between-run precision were calculated at 6, 30, 60 ng/50 mg hair with coefficients of variation less than 11%. Within and between run accuracies at the same concentrations were$\pm$14% and $\pm$30% of target for both analytes, respectively. Absolute and relative recovery at 10 and 100 ng were 60∼91%. The method was used to detect and quantify THC and THC-COOH in cannabis abuser's hairs (N = 16) and SRM (N=5, THC 1 ng/mg, NIST). We detected THC and THC-COOH in only one hair sample. In SRM, % accuracy was 93% (range 86∼103%) and precision (% CV) was 8.14. We began to set up a quantitative analysis of THC and THC-COOH using EI-GC-MS. Continuously, we need to modify and develop this method in order to apply for identification in cannanbis users' hair.

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • 제31권2호
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

두 가지 축구 골킥 동작의 운동역학적 비교 분석 (Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer)

  • 진영완;신제민
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

상대위상을 이용한 시각적 협응 패턴의 지각 역학과 격자무늬를 이용한 부가적 감각 정보에 따른 영향 (Visual Perception Dynamics of Relative Phase Coordination Pattern with Additional Visual Information Using a Background Grid)

  • 류영욱
    • 인지과학
    • /
    • 제23권3호
    • /
    • pp.409-424
    • /
    • 2012
  • 본 연구의 목적은 상대적 위상을 이용한 시각적 협응 패턴의 지각이 조절변수의 변화에 따라 HKB 모델(Haken, Kelso, Bunz, 1985)의 예측에 따르는지 확인해 보는 것이었다. 또한 격자무늬 배경을 이용한 부가적인 시각 정보가 협응 패턴 분별의 정확성과 안정성을 향상시키는지 알아보았다. 피험자들은 일반 배경과 격자 배경 중 하나의 그룹에 속하여 패턴 지각 연습과 패턴 분별 시험을 하였다. 피험자들은 좌우로 이동하는 두 점 사이의 상대위상으로 정의된 $0^{\circ}$, $18^{\circ}$, $36^{\circ}$, $54^{\circ}$, $72^{\circ}$, $90^{\circ}$, $108^{\circ}$, $126^{\circ}$, $144^{\circ}$, $162^{\circ}$, $180^{\circ}$ 패턴을 관찰하였다. 패턴 지각 연습은 두 점의 진동 주기 0.25 Hz에서 시행되었고, 패턴 분별 시험은 0.5 Hz, 1 Hz, 2 Hz에서 시행되었다. 패턴 분별 시험에서 얻은 분별 점수, 절대 분별 오차, 분별 안정성 자료를 통계적으로 분석하였다. 분별의 정확성과 안정성은 진동 주기가 느릴 때는 "뒤집어진 U" 모양을 띄다가 진동 주기가 빨라짐에 따라 $180^{\circ}$ 상대위상 패턴에 가까운 패턴들에서 정확성과 안정성이 감소하였다. 이러한 발견은 협응 패턴의 지각적 분별 역학이 HKB 모델을 따름을 나타낸다. 부가적 환경 정보인 격자무늬가 협응 패턴 분별의 정확성과 안정성에 도움은 되지 못하였다.

  • PDF

Development of a Daily Solar Major Flare Occurrence Probability Model Based on Vector Parameters from SDO/HMI

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Lee, Kangjin;Lee, Jin-Yi
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.59.5-60
    • /
    • 2017
  • We present the relationship between vector magnetic field parameters and solar major flare occurrence rate. Based on this, we are developing a forecast model of major flare (M and X-class) occurrence rate within a day using hourly vector magnetic field data of Space-weather HMI Active Region Patch (SHARP) from May 2010 to April 2017. In order to reduce the projection effect, we use SHARP data whose longitudes are within ${\pm}60$ degrees. We consider six SHARP magnetic parameters (the total unsigned current helicity, the total photospheric magnetic free energy density, the total unsigned vertical current, the absolute value of the net current helicity, the sum of the net current emanating from each polarity, and the total unsigned magnetic flux) with high F-scores as useful predictors of flaring activity from Bobra and Couvidat (2015). We have considered two cases. In case 1, we have divided the data into two sets separated in chronological order. 75% of the data before a given day are used for setting up a flare model and 25% of the data after that day are used for test. In case 2, the data are divided into two sets every year in order to reduce the solar cycle (SC) phase effect. All magnetic parameters are divided into 100 groups to estimate the corresponding flare occurrence rates. The flare identification is determined by using LMSAL flare locations, giving more numbers of flares than the NGDC flare list. Major results are as follows. First, major flare occurrence rates are well correlated with six magnetic parameters. Second, the occurrence rate ranges from 0.001 to 1 for M and X-class flares. Third, the logarithmic values of flaring rates are well approximated by two linear equations with different slopes: steeper one at lower values and lower one at higher values. Fourth, the sum of the net current emanating from each polarity gives the minimum RMS error between observed flare rates and predicted ones. Fifth, the RMS error for case 2, which is taken to reduce SC phase effect, are smaller than those for case 1.

  • PDF

판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법 (Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates)

  • 이태훈;김정석;장경영
    • 비파괴검사학회지
    • /
    • 제30권5호
    • /
    • pp.458-463
    • /
    • 2010
  • 음향 비선형성은 재료 물성의 미세한 변화에 민감하기 때문에, 이를 측정하는 비선형 초음파 기술은 재료의 열화나 피로를 평가할 수 있는 기법으로 연구되어 왔다. 하지만 벌크파를 이용하는 일반적인 비선형 초음파 기법은 얇은 판재에 적용하는 것에는 여러 한계가 있다. 이와 같은 경우에는 비선형 Lamb 파의 사용을 생각할 수 있지만, Lamb 파는 벌크파와 매우 다른 전파 특성을 가지고 있어 그 비선형 특성에 대한 별도의 연구를 필요로 한다. 이를 위해 본 연구에서는 Lamb 파에서 비선형성에 의해 전파하면서 누적 성장할 수 있는 2차 고조파 모드의 발생 조건을 분석하였으며, 그 결과 네 가지 조건, 즉 (1) phase matching, (2) non-zero power flux, (3) group velocity matching, (4) non-zero out-of-plane displacement 를 제시하였다. 그리고 제시된 조건으로 알루미늄 판재에 대책 실험한 결과 이론 예측과 동일하게 전파 거리에 따라 2차 고조파 성분의 크기와 비선형 파라미터가 증가하였고, Al6061-T6 과 Al1100-H14에서 측정된 상대적인 비선형 파라미터의 비율이 이론적인 비율과 근접함을 보였다.

Replacement value of cottonseed meal for soybean meal in broiler chicken diets with or without microbial enzymes

  • Abdallh, Medani Eldow;Musigwa, Sosthene;Ahiwe, Emmanuel Uchenna;Chang'a, Edwin Peter;Al-Qahtani, Mohamed;Bhuiyan, Momenuzzaman;Iji, Paul Ade
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.159-173
    • /
    • 2020
  • A 4×2 factorial feeding trial was designed to investigate the effect of replacing soybean meal (SBM) with cottonseed meal (CSM) in wheat/sorghum/SBM-based diets fed with or without microbial enzymes in diets on the performance, visceral organ development and digestibility of nutrients of broiler chickens. Four graded levels of CSM - none (0%), low (4%, 8%, and 12%), medium (5%, 10%, and 15%), and high (6%, 12%, and 18%) of complete diets in starter, grower and finisher, respectively were fed with or without 100 mg/kg of xylanase and β-glucanase blend. Eight isocaloric and isonitrogenous diets were formulated using least-cost method to meet the nutrient specifications of Ross 308 male broilers. Each treatment was randomly assigned to 6 replicates (10 birds per replicate). There were CSM-enzyme interactions (p < 0.05) on feed intake (FI) and weight gain (WG) in the starter phase. Enzyme supplementation improved (p < 0.05) feed conversion ratio (FCR) in the grower and finisher phases, and increased WG in growing and finishing birds. CSM inclusion reduced (p < 0.05) the weight of gizzard and proventriculus in starter chicks, while these organs were bigger (p < 0.05) in the grower phase. The test ingredient decreased (p < 0.05) small intestinal weight in starter and grower birds. The CSM increased the absolute weight of thighs (p < 0.05) while breast meat was increased (p < 0.01) by enzyme addition. Starch digestibility was improved (p < 0.01) by enzyme inclusion and decreased (p < 0.01) by CSM. Enzyme supplementation improved (p < 0.05) the ileal digestibility of gross energy and protein. The results demonstrate that CSM can substitute up to 90% SBM in broiler chicken diets without compromising performance, and the nutritive value of CSM-containing diets can effectively be improved by enzyme supplementation.