• Title/Summary/Keyword: Absolute Signal

Search Result 254, Processing Time 0.031 seconds

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

Original Identifier Code for Patient Information Security

  • Ahmed Nagm;Mohammed Safy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.141-148
    • /
    • 2023
  • During the medical data transmissions, the protection of the patient information is vital. Hence this work proposes a spatial domain watermarking algorithm that enhances the data payload (capacity) while maintaining the authentication and data hiding. The code is distributed at every pixel of the digital image and not only in the regions of non-interest pixels. But the image details are still preserved. The performance of the proposed algorithm is evaluated using several performance measures such as the mean square error (MSE), the mean absolute error (MAE), and the peak signal to noise Ratio (PSNR), the universal image quality index (UIQI) and the structural similarity index (SSIM).

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

A Study on Determining Control Points and Surveying Feature Points for Geo-Referencing of Terrestrial LiDAR Data in Urban Areas (도심지 지상 LiDAR 자료의 Geo-Referencing을 위한 기준점 선정 및 특징점 측량 방안 연구)

  • Park, Hyo-Keun;Han, Soo-Hee;Cho, Hyung-Sig;Kim, Sung-Hoon;Sohn, Hong-Gyoo;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.179-186
    • /
    • 2010
  • In this research, an effective method for absolute positioning of feature points is proposed, which is applicable to geo-referencing of terrestrial LiDAR data scanned in dense urban areas. GPS positioning, common in absolute positioning, is apt to fail in the presence of signal disturbancein dense urban circumstances, while traditional surveying methods, including traversing and leveling, are generally more costly for wider areas. The idea is that reference points, marked on top of buildings, are surveyed by GPS positioning and then feature points are relatively positioned from the reference points. The present method, if laser scanning is accompanied, gets two advantages; one is that less feature points need to be surveyed because they can be substituredby reference points, and the other is that laser scanning can be more stably carried out. The present method was shown, from the experiments, to be cost-effective against traditional ones.

Quantitative Kinetic Energy Estimated from Disdrometer Signal (우적 크기 탐지기 신호로 산출한 정량적 운동에너지)

  • Moraes, Macia C. da S.;Sampaio, Elsa;Tenorio, Ricardo S.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.153-160
    • /
    • 2020
  • The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index.

Enhanced Binary Block Matching Method for Constrained One-bit Transform based Motion Estimation (개선된 이진 블록 매칭 방법을 사용한 제한된 1비트 변환 알고리듬 기반 움직임 추정)

  • Kim, Hyungdo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2015
  • In this paper, Enhanced binary block matching method for Constrained one-bit transform (C1BT) based motion estimation is proposed. Binary motion estimation exploits the Number of non-matched points (NNMP) as a block matching criterion instead of the Sum of Absolute Differences (SAD) for low complex motion estimation. The motion estimation using SAD could use the smaller block for more accurate motion estimation. In this paper the enhanced binary block matching method using smaller motion estimation block for C1BT is proposed to the more accurate binary matching. Experimental results shows that the proposed algorithm has better Peak Signal to Noise Ration (PSNR) results compared with conventional binary transform algorithms.

The Effects of Stimulus Velocity and Skill Levels on Anticipation Timing Performance of Passing (자극의 가속 및 감속 조건에 따른 숙련도별 농구 패스의 예측 타이밍 수행의 차이)

  • Hong, Seung-Bun
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • The study was to investigate the effects of stimulus velocity and passer's skill level on anticipation timing performance. Fourteen subjects(seven novices and seven experts) were required to make a total 12 passes in coincidence with an experimentally manipulated moving light signal in randomly presented three different conditions(4m/s, $3m/s{\rightarrow}5m/s$, $5m/s{\rightarrow}3m/s$). Results of analyses showed that absolute error(AE) and constant error(CE) were greater in constant acceleration of the moving stimulus. In addition, experts were more accuracy and consistency than novices on absolute, constant and variable error(VE). These findings indicated that stimulus velocity served as the major determination of anticipation timing performance of passing.

The Natural History and Growth Rate of Meningiomas

  • Han, Jung-Ho;Seol, Ho-Jun;Kim, Dong-Gyu;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.3
    • /
    • pp.198-203
    • /
    • 2006
  • Objective : To evaluate the natural histories and growth rates of meningiomas, the authors perform this retrospective observational study and attempt to identify those factors predicting tumor growth. Methods : Between 1993 and 2004, a total of 83 patients were diagnosed by computed tomography[CT] scans or magnetic resonance[MR] imaging as having an intracranial meningioma, and were treated by observation only using regular clinical and radiological examinations. Twenty-six of these 83 patients, with available data were included in this study. Follow up periods ranged from 9 to 137 months [mean, 55.6 mo.; median, 60 mo.]. The tumor volumes, absolute growth rates, and tumor doubling times were calculated. Results : Patient age and sex distributions were comparable to those of other studies, but exceptionally 16 meningiomas [62%] were located at the skull base in the present study. During follow-up monitoring, the majority of meningiomas grew, though 77% showed low absolute annual growth rates [$<1cm^3/yr$]. The tumor doubling times ranged from 2.87 to 201.72 years [mean, 42.91 yr]. Based on Imaging analysis, peritumoral edema and the absence of calcification were probable factors predicting tumor growth. Tumor-related symptoms seemed to be slightly related to tumor growth. Other factors, e.g., gender, age, tumor location, and T2-weighted signal Intensities on MR imaging, were not significantly related to tumor growth. Conclusion : This study shows that the majority of meningiomas are slow growing. However, variations in tumor growth are unexplained, thus individualized optimal treatment strategies should be provided in each meningioma.

Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials - (구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 -)

  • Hye Ree Han
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.107-123
    • /
    • 2023
  • This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.