• 제목/요약/키워드: Absolute Probe

검색결과 37건 처리시간 0.032초

평판형 와전류 표준 시험편의 개발 및 교정 (Development and Calibration of a Plate Type Eddy Current Standard)

  • 김영주;김영길;안봉영;윤동진
    • 비파괴검사학회지
    • /
    • 제27권5호
    • /
    • pp.393-397
    • /
    • 2007
  • 절대형 와전류 탐촉자 인증 시험에 사용되는 인공 결함이 포함된 와전류 표준 시편을 개발하였다. 개발된 표준 시편은 ASTM E 1629에서 규정한 전기 전도도를 지니고 인공 결함을 포함하며 전체 형상과 규격, 인공 결함의 규격을 만족한다. 인공 결함의 규격은 너비 0.1 mm, 깊이 0.5 mm이다. 이 인공 결함은 기존에는 양 측 끝단만 측정이 가능하고 중간 부위의 측정이 불가능하여 가운데 부위의 인증이 불가능하였으나 초음파 기술을 적용하는 새로운 방법을 도입하여 $15\;{\mu}m$ 정도의 불확도로 측정을 하여 교정이 가능하도록 하였다.

A Cutoff Probe for the Measurement of High Density Plasma

  • 유광호;나병근;김대웅;유신재;김정형;성대진;신용현;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.148-148
    • /
    • 2012
  • A cutoff probe is the novel diagnostic method to get the absolute plasma density with simple system and less assumption. However, high density of ion flux from plasma on probe tip can make the error of plasma density measurement because the dielectric material of probe tip can be damaged by ion flux. We proposed a shielded cutoff probe using the ceramic tube for protection from ion flux. The ceramic tube on probe tip can intercept the ion flux from plasma. The transmitted spectrum using the shielded cutoff probe is good agreement with E/M wave simulation result (CST Microwave Studio) and previous circuit simulation of cutoff probe [1]. From the analysis of the measured transmitted spectrum base on the circuit modeling, the parallel resonance frequency is same as the unshielded cutoff probe case. The obtained results of electron density is presented and discussed in wide range of experimental conditions, together with comparison result with previous cutoff method.

  • PDF

정밀 삼차원 측정을 위한 백색광 간섭 광학 프로브 개발 (Optical Probe of white Light Interferometry for Precision Coordinate Metrology)

  • 김승우;진종한;강민구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Demand for high precision measurement of large area is increasing in many industrial fields. White-light Scanning Interferometer(WSI) is a well-known method for 3D profile measurement. However WSI has some limitations in a measurement range because of the sensing mechanism. Therefore, in this paper we use a heterodyne laser interferometer to get over the limitations of a short measurement range in WSI, We suggest a new WSI system combined with heterodyne laser interferometer. This system is aimed at eliminating Abbe error with measuring the focus point directly. With the use of triggering functionality of WSI, we can use this system as a probe of a precision stage such as a probe of CMM. The suggested system gives a repeatability of 87 nm in the absolute distance measurement test under the laboratory environment.

  • PDF

상용 3차원 측정기의 전체 측정정밀도 교정 및 실시간 보정시스템 (Development of Calibration and Real-Time Compensation System for Total Measuring Accuracy in a Commercial CMM)

  • 박희재;김종후
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2358-2367
    • /
    • 1994
  • This paper presents techniques for evaluation and compensation of total measuring errors in a commercial CMM. The probe errors as well as the machine geometric errors are assessed from probing of the mechanical artefacts such as shpere, step, and rings. For the error compensation, the integrated volumetric error equations are considered, including the probe error adn the machine geometric error. The error compensation is performed on the absolute scale coordinate system, in order to overcome the redundant degree of freedom in the CMM with multi-axis probe. A interface box and corresponding software driver are developed for data intercepting/correction between the machine controller and machine, thus the volumetric errors can be compensated in real time with minimum interference to the operating software and hardware of a commercial CMM. The developed system applied to a practical CMM installed on the shop floor, and demonstrated its performance.

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

Reynolds Number Effects on the Non-Nulling Calibration of a Cone-Type Five-Hole Probe for Turbomachinery Applications

  • Lee, Sang-Woo;Jun, Sang-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1632-1648
    • /
    • 2005
  • The effects of Reynolds number on the non-nulling calibration of a typical cone-type five-hole probe have been investigated for the representative Reynolds numbers in turbomachinery. The pitch and yaw angles are changed from - 35 degrees to 35 degrees with an angle interval of 5 degrees at six probe Reynolds numbers in range between $6.60{\times}10^3\;and\;3.17{\times}10^4$. The result shows that not only each calibration coefficient itself but also its Reynolds number dependency is affected significantly by the pitch and yaw angles. The Reynolds-number effects on the pitch- and yaw-angle coefficients are noticeable when the absolute values of the pitch and yaw angles are smaller than 20 degrees. The static-pressure coefficient is sensitive to the Reynolds number nearly all over the pitch- and yaw-angle range. The Reynolds-number effect on the total-pressure coefficient is found remarkable when the absolute values of the pitch and yaw angles are larger than 20 degrees. Through a typical non-nulling reduction procedure, actual reduced values of the pitch and yaw angles, static and total pressures, and velocity magnitude at each Reynolds number are obtained by employing the calibration coefficients at the highest Reynolds number ($Re=3.17{\times}10^4$) as input reference calibration data. As a result, it is found that each reduced value has its own unique trend depending on the pitch and yaw angles. Its general tendency is related closely to the variation of the corresponding calibration coefficient with the Reynolds number. Among the reduced values, the reduced total pressure suffers the most considerable deviation from the measured one and its dependency upon the pitch and yaw angles is most noticeable. In this study, the root-mean-square data as well as the upper and lower bounds of the reduced values are reported as a function of the Reynolds number. These data would be very useful in the estimation of the Reynolds-number effects on the non-nulling calibration.

열확산도 측정을 위한 광열 신기루 기법 개발 (Development of photothermal mirage technique for measuring thermal diffusivity)

  • 김동식;최선락;이주철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1395-1400
    • /
    • 2003
  • This paper introduces a novel scheme for determining the thermal diffusivity of solids using the photothermal mirage technique. The suggested scheme extends the thermal-wave coupling method, employing the solution to the heat conduction equation in close proximity to the pump beam. Therefore, determination of thermal diffusivity is possible by detecting the mirage signal with small separation between the probe and pump beams, with enhanced intensity of the mirage signal. Though the method requires information about the probe-beam height, the absolute transverse position of the probe beam need not be known as it is automatically evaluated by the iterative-computation procedure. The thermal diffusivity of Ni is measured by the proposed scheme and the result demonstrates good agreement with the literature value to within 5 %.

  • PDF

유전체 원주공진기법에 의한 고주파 유전특성 측정에 관한 연구 (Study on the Microwave Dielectric properties in the Dielectric Rod Resonator Method)

  • 김경용;김왕섭;최환
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.471-481
    • /
    • 1995
  • Measurement factors for the dielectric properties of low dielectric loss materials (tan${\dalta}{\le}10^{-4}$) were investigated using the dielectric rod resonator method. It was shown that the relative conductivity (${\sigma}_{r}$) should be controlled within a 5% to obtain the standard deviations of less than 0.07 for permittivity .epsilon.r and 0.06${\times}10^{-4}$ for tan.delta.respectively. Surface resistivity (R$_s$) could be reduced when the surface roughness of parallelled conducting plate was less than 0.07 .mu.m. Measurement error for the permittivity was $\pm$0.02% independent of probe loop size, whereas the error in Q value was reduced with the decrease in probe loop size and also with the increase in the absolute values of Q. Reliable Q values were determined with the probe loop size of less than 4mm. The accurate for the distance between the measuring probe loop and the sample could be obtained when the insertion loss of resonant frequency ranged -15dB - -30dB.

  • PDF

유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 (제주시 시범사업지역을 대상으로) (Expansion of Sample OD Based on Probe Vehicle Data in a Ubiquitous Environment)

  • 정소영;백승걸;강정규
    • 대한교통학회지
    • /
    • 제26권4호
    • /
    • pp.123-133
    • /
    • 2008
  • 최근 교통 물류 분야에서도 유비쿼터스 환경의 정보수집체계 및 이를 응용한 서비스 개발의 필요성이 매년 높아지고 있다. 프로브 차량과 무선통신기술을 활용한 교통정보 수집체계는 그 대표적인 사례로 차량의 기종점 자료를 이용하여 시간대별 OD를 산정하는 것이 가능하다. 그러나 프로브 차량 정보를 활용하여 산정된 OD는 시간적 공간적으로 변동되는 표본OD이기 때문에 이를 정적OD로 전환하기 위해서는 수집정보를 집적하여 적정 표본율을 산정하고, 표본OD를 전수화하는 과정이 필요하다. 본 연구는 제주시를 대상으로 수집된 실제 데이터를 표본OD 산정 및 전수화 알고리즘에 적용하여 표본OD를 산정하고 이를 전수화하였다. 각 링크별 관측교통량과 배분교통량과의 오차를 비교 검토한 결과 링크별 관측교통량 과 배분교통량의 평균 오차율은 22.9%, 상 하위 10%의 이상 자료를 제거한 후의 평균 오차율은 17.6%로 각각 나타났다. 본 연구는 기존OD가 존재하지 않는 지역에서 프로브 차량의 경로정보를 활용하여 정적OD를 산정하였다는 점과 적정 오차율 내 수렴을 위한 적정 표본율을 제시하였다는 점에서 그 의의를 찾을 수 있다.

지지대 부근의 전열관 결함으로 인해 발생되는 보빈 와전류신호의 예측 및 분석 (Prediction and Analysis of Bobbin ECT Signals generated by Tube Defects near Support Plate)

  • 신영길;이윤태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.942-944
    • /
    • 2005
  • In this study, eddy current signals from various anomalous defects in the heat exchanger tube are predicted af their signal slope characteristics no analyzed. The signal changes due to frequency increase are also observed. Based in the accumulated knowledge, the analysis of superimposed signal is attempted which includes the effects of support plate. Both differential and absolute bobbin probe signals are analyzed. For the prediction of signals, axisymmetric finite element modeling is used and this leads us to the utilization of slope angle analysis of the signal. Results show that differential signals are useful to locate the position of defect under the support plate and absolute signals no easy to predict and analyze even though they no superimposed signals. Combined use of these two types of signals will accomplish a reliable inspection.

  • PDF