• Title/Summary/Keyword: Absolute Position Measurement

Search Result 81, Processing Time 0.019 seconds

Fringe Sensitivity of Projection Moire Topography Due to Position of Light Source and Object Distance According to Grating Periods (영사식 무아레 토포그래피에서 격자 주기에 따른 물체거리와 광원의 위치에 대한 무늬 민감도 변화)

  • Oh, Hyun Seock;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • In projection moire topography, the investigation of fringe sensitivity, which means the change rate of fringe order according to object height, is important and necessary to reduce the measurement error of the shape of an object. Using the fringe sensitivity, the determination of the absolute orders of moire fringes can be performed very easily and rapidly. The important parameters in the determination of absolute orders of fringes are the positions of light source and object, and the grating period in projection moire topography. Among these parameters, the fringe sensitivity due to the transverse motion of the light source and the longitudinal motion of the object according to grating periods are analyzed and compared. As a result, whereas the fringe sensitivity in the transverse-motion method increases linearly and gradually as the distance between light source and imaging sensor increases, the fringe sensitivity due to the longitudinal-motion method decreases dramatically as the distance between imaging lens and object increases. In these methods, the fringe sensitivity and its change increase as the grating period increases.

A new method for in line electrokinetic characterization of cakes

  • Lanteri, Yannick;Ballout, Wael;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony;Sauvade, Patrick
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.157-174
    • /
    • 2013
  • The present study is devoted to the validation of a new method for in line electrokinetic characterisation of deposits on membrane surfaces. This method is based upon simultaneous measurements of transversal streaming potential and permeates flux at constant pressure before and during the deposit formation. Dead-end filtration experiments were conducted with negative flat membranes forming a narrow slit channel, negative hollow fiber membranes and mono-dispersed suspensions of (negatively charged) polystyrene latex and (positively charged) melamine particles at various concentrations. It was observed that the overall streaming potential coefficient increased in absolute value with the deposited latex quantity, whereas it decreased and changed of sign during the filtration of melamine suspensions. By considering a resistance-in-series model, the streaming potential coefficient of the single deposit ($SP_d$) was deduced from the electrokinetic and hydraulic measurements. The independence of $SP_d$ with respect to growth kinetics validates the measurement method and the reliability of the proposed procedure for calculating $SP_d$. It was found that $SP_d$ levelled off much more quickly when filtration was performed through the slit channel. This different behaviour could result from a non-uniform distribution of the deposit thickness along the membrane given that the position of measuring electrodes is different between the two cells.

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

Development of Photothermal Mirage Technique for Measuring Thermal Diffusivity (열확산도 측정을 위한 광열 신기루 기법 개발)

  • Choi, Sun-Rock;Lee, Joo-Chul;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1220-1228
    • /
    • 2003
  • The mirage technique is proved to be powerful in measuring the thermal diffusivity of materials. In particular, its contactless nature makes it suitable for delicate samples and microscale structures. In this study, thermal-wave-coupling method is developed in a general form for both thermally thin and thick samples. In the suggested measuring scheme, the probe beam can be positioned close to the pump beam and the absolute position need not be measured. Therefore the new scheme provides a relatively simple yet effective way to determine the thermal diffusivity of thermally thick samples. Thermal diffusivities of bulk samples like Ni and Al were measured and the characteristics of mirage signal for a thin film were observed by using the mirage experimental setup. The apparent thermal diffusivity was measured by varying such parameters as probe beam height, size of pump beam, power of pump beam, and surface condition of sample. From the practical standpoint, it is shown that the size of the pump beam is the most important factor for accurate thermaldiffusivity measurement. Experiments using thin-film samples show that the thermal diffusivity of a substrate covered with thin film can be measured by photothermal mirage signals.

Neutronic analysis of control rod effect on safety parameters in Tehran Research Reactor

  • Torabi, Mina;Lashkari, A.;Masoudi, Seyed Farhad;Bagheri, Somayeh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1017-1023
    • /
    • 2018
  • The measurement and calculation of neutronic parameters in nuclear research reactors has an important influence on control and safety of the nuclear reactor. The power peaking factors, reactivity coefficients and kinetic parameters are the most important neutronic parameter for determining the state of the reactor. The position of the control shim safety rods in the core configuration affects these parameters. The main purpose of this work is to use the MTR_PC package to evaluate the effect of the partially insertion of the control rod on the neutronic parameters at the operating core of the Tehran Research Reactor. The simulation results show that by increasing the insertion of control rods (bank) in the core, the absolute values of power peaking factor, reactivity coefficients and effective delayed neutron fraction increased and only prompt neutron life time decreased. In addition, the results show that the changes of moderator temperature coefficients value versus the control rods positions are very significant. The average value of moderator temperature coefficients increase about 98% in the range of 0-70% insertion of control rods.

Vehicle Speed Measurement using SAD Algorithm (SAD 알고리즘을 이용한 차량 속도 측정)

  • Park, Seong-Il;Moon, Jong-Dae;Ko, Young-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.73-79
    • /
    • 2014
  • In this paper, we proposed the mechanism which can measure traffic flow and vehicle speed on the highway as well as road by using the video and image processing to detect and track cars in a video sequence. The proposed mechanism uses the first few frames of the video stream to estimate the background image. The visual tracking system is a simple algorithm based on the sum of absolute frame difference. It subtracts the background from each video frame to produce foreground images. By thresholding and performing morphological closing on each foreground image, the proposed mechanism produces binary feature images, which are shown in the threshold window. By measuring the distance between the "first white line" mark and the "second white line"mark proceeding, it is possible to find the car's position. Average velocity is defined as the change in position of an object divided by the time over which the change takes place. The results of proposed mechanism agree well with the measured data, and view the results in real time.

A Study to Expand the Linear Range of the Mandibular Kinesiograph (Mandibular Kinesiograph에서의 선형범위 확장에 관한 연구)

  • Kim, In-Kwon
    • The Journal of the Korean dental association
    • /
    • v.22 no.7 s.182
    • /
    • pp.621-633
    • /
    • 1984
  • The possibility of expanding the linear range of the Kinesiograph was studied using a nonferromagnetic mechanical positioning device. The magnet was moved in linear steps of 5 mm through three planes parallel to the frame work carrying the sensors within working range of a 3 cm wide by 4 cm deep by 5 cm high three dimensional lattice and a matrix of 693 data points was achieved. For each data point, the three Kinesiograph outputs were associated with the values of actual position. Once three coordinates of observed values were known, actual values could be determined. A computer program was specially written in Fortran to deal with this work. Because each dat point was 5 mm apart from each other, there would be 480 cubes with 8 data points Further refinement of the system is possible using a smaller interval between each data point. In conclusion, a theoretical model was presented which, by means of computer support, would allow the absolute measurement of jaw position over the entire range of functional jaw movements.

  • PDF

Estimating Location in Real-world of a Observer for Adaptive Parallax Barrier (적응적 패럴랙스 베리어를 위한 사용자 위치 추적 방법)

  • Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1492-1499
    • /
    • 2019
  • This paper propose how to track the position of the observer to control the viewing zone using an adaptive parallax barrier. The pose is estimated using a Constrained Local Model based on the shape model and Landmark for robust eye-distance measurement in the face pose. Camera's correlation converts distance and horizontal location to centimeter. The pixel pitch of the adaptive parallax barrier is adjusted according to the position of the observer's eyes, and the barrier is moved to adjust the viewing area. This paper propose a method for tracking the observer in the range of 60cm to 490cm, and measure the error, measurable range, and fps according to the resolution of the camera image. As a result, the observer can be measured within the absolute error range of 3.1642cm on average, and it was able to measure about 278cm at 320×240, about 488cm at 640×480, and about 493cm at 1280×960 depending on the resolution of the image.

The Effective Means to Promote GPS-Based Survey for Cadastral Surveying of GPS Performance Standards and Measures (GPS기반의 효율적인 지적측량성과를 위한 측량기준 및 방안에 대한 연구)

  • Ahn, Jong Soon;Kang, Joon Mook;Yun, Hee Cheon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • In this study, one of the main aims is to build up a technical foundation for promoting the cadastral resurvey effectively and to improve the accuracy of cadastral surveying is to make use of precise surveying techniques in allowance of position errors as reference accuracy in cadastral resurvey, which is proper to obtain the sufficient accuracy of the cadastral control points, and parcel boundary points by introducing the GNSS-based surveying techniques on cadastral survey. In detail, the existing procedures and outcomes of cadastral survey were compared and analyzed for suggesting a better survey technique than that of the other techniques in a variety of aspects of capability of cadastral survey. The new skills and supports could be upmost importance when doing cadastral survey. What's more, essentially, 'The Measurement Department' makes all the efforts to establish 'The Surveying Regulations'. This could possibly apply GNSS-based surveying technique to the cadastral resurvey for the foreseeable future and this research paper suggested that how to improve absolute accuracy of cadastral reference points by means of putting to use the appropriate models of measurement further.

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.