• Title/Summary/Keyword: Abrasives

Search Result 192, Processing Time 0.025 seconds

Tribological Behavior of Automotive Brake Pads with Different Sizes of an Abrasive Material(ZrSiO$_4$) (자동차용 마찰재의 연마제(ZrSiO$_4$) 크기에 따른 마찰특성에 관한 연구)

  • Hong, Young-Suk;Ko, Kil-Ju;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.180-186
    • /
    • 2000
  • Friction materials with four different sizes of zircon - l${\mu}{\textrm}{m}$, 6${\mu}{\textrm}{m}$, 75${\mu}{\textrm}{m}$, 140${\mu}{\textrm}{m}$- were investigated to evaluate the size effects of abrasive particles used in the automotive brake pads on brake performance. Although the brake pads with the largest size of zircon showed a good frictional stability and low wear, rotors were severely abraded due to the aggressiveness of coarse Bircon. As the siBe of zircon decreased. friction force and the amplitude of friction coefficient increased. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the size of zircon. The small size zircon was not effective in developing a transfer layer on the rotor surface while minimizing the damage on the counter surface.

  • PDF

A Study on Material Characterization of Semi-Solid Materials(II) -Determination of Flow Stress For Semi-Solid Materials Using Backward Extrusion Experiment with Model Material and Upper Bound Analysis- (반용융 재료의 물성치 평가에 관한 연구(II) -모델재료의 후방압출 실험과 상계해석을 통한 반용융 재료의 유동응력식 결정-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.374-383
    • /
    • 1999
  • To determine the flow stress of semi-solid materials, a new combined method has been studied by experimental and analytic technique in the current approach. Using backward extrusion experiment and its numerical analysis, the characterization scheme of semi-solid materials according to the change of initial solid volume fraction has been proposed. Because that solid volume fraction is sensitive to temperature change, it is required to precisely control the temperature setting. Model materials can guarantee the establishment of material characterization technique from the noise due to temperature change. Thus, clay mixed with bonded abrasives was used for experiment and the change of initial solid fraction was copied out through the variation of mixing ratio. Upper bound method was adapted to increase in efficiency of the calculation in numerical analysis and new kinematically admissible velocity field was employed to improve the accuracy of numerical solution. It is thought that the material characterization scheme proposed in this study can be applied to not only semi-solid materials, but also other materials that is difficult to obtain the simple stress state.

  • PDF

A Study on the recycle of CMP Slurry Abrasives (CMP 슬러리 연마제의 재활용에 대한 연구)

  • Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Sung-Woo;Choi, Woon-Shik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.109-112
    • /
    • 2003
  • Recently, CMP (Chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. Also, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Effects of Citric Acid as a Complexing Agent on Material Removal in Cu CMP (Cu CMP에서 Citric Acid가 재료 제거에 미치는 영향)

  • Jung Won-Duck;Park Boum-Young;Lee Hyun-Seop;Jeong Hea-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.889-893
    • /
    • 2006
  • Chemical mechanical polishing (CMP) achieves surface planrity through combined mechanical and chemical means. The role of slurry is very important in metal CMP. Slurry used in metal CMP normally consists of oxidizers, complexing agents, corrosion inhibitors and abrasives. This paper investigates the effects of citric acid as a complexing agent for Cu CMP with $H_2O_2$. In order to study chemical effects of citric acid, X-ray photoelectron spectroscopy (XPS) was peformed on Cu sample after etching test. XPS results reveal that CuO, $Cu(OH)_2$ layer decrease but $CU/CU_2O$ layer increase on Cu sample surface. To investigate nanomechanical properties of Cu sample surface, nanoindentation was performed on Cu sample. Results of nanoindentation indicate wear resistance of Cu surface decrease. According to decrease of wear resistance on Cu surface removal rate increases from $285\;{\AA}/min\;to\;8645\;{\AA}/min$ in Cu CMP.

A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding (전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구)

  • Kim, Tae-Wan;Lee, Jong-Ryul;Lee, Deug-Woo;Song, Ji-Bok;Choi, Dae-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

Electrochemical Deburring System by the Electroplated CBN Wheel (입방정질화붕소입자 전착지석에 의한 전해디버링 시스템)

  • Choe, In-Hyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

A Preliminary Study on Polishing Process using Magnetorheological Fluid (자기유변유체를 활용한 연마공정에 대한 기초연구)

  • Hwang B.H.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.464-467
    • /
    • 2005
  • Among several polishing techniques for micro structures, polishing process using magnetorheological(MR) fluid has advantages in the finishing process of 3-D micro structures because abrasives in the fluid can reach surfaces with complex feature and play their role. Although many researchers have been trying to reveal its polishing mechanism of the MR polishing, it has not been successful because in-situ measurement of state variables is difficult and process parameters are complex. In fact, one of the key factors for applying process control methodologies, such as Run-to-Run control, is the measuring and monitoring of slurry quality because the process strongly depends on the fluid property. Therefore, it is necessary to maintain consistent slurry quality to guarantee the process repeatability. The proposed equipment achieves the longer life cycle of MR fluid and reduces the variability of products. A new method to measure the material removal rate in MRF polishing process is also proposed and discussed.

  • PDF

Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation (기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

Influence of the Diamond Abrasive Size during Mechanical Polishing Process on the Surface Morphology of Gallium Nitride Substrate (Gallium Nitride 기판의 Mechanical Polishing시 다이아몬드 입자 크기에 따른 표면 Morphology의 변화)

  • Kim, Kyoung-Jun;Jeong, Jin-Suk;Jang, Hak-Jin;Shin, Hyun-Min;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.32-37
    • /
    • 2008
  • Freestanding hydride vapor phase epitaxy grown GaN(Gallium Nitride) substrates subjected to various polishing methods were characterized for their surface and subsurface conditions, Although CMP(Chemical Mechanical Polishing) is one of the best approaches for reducing scratches and subsurface damages, the removal rate of Ga-polar surface in CMP is insignificant($0.1{\sim}0.3{\mu}m$/hr) as compared with that of N-polar surface, Therefore, conventional MP(Mechanical Polishing) is commonly used in the GaN substrate fabrication process, MP of (0001) surface of GaN has been demonstrated using diamond slurries with different abrasive sizes, Diamond abrasives of size ranging from 30nm to 100nm were dispersed in ethylene glycol solutions and mineral oil solutions, respectively. Significant change in the surface roughness ($R_a$ 0.15nm) and scratch-free surface were obtained by diamond slurry of 30nm in mean abrasive size dispersed in mineral oil solutions. However, MP process introduced subsurface damages confirmed by TEM (Transmission Electronic Microscope) and PL(Photo-Luminescence) analysis.

The Development of Automatic Tool Change System for Polishing Robot and Windows-Environment Integration Program for Application (연마 로붓용 자동공구교환장치와 Windows환경에서의 통합용 프로그램 개발)

  • Park, Sang-Min;An, Jong-Seok;Song, Moon-Sang;Kim, Jae-Hee;Yoo, Bum-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.147-154
    • /
    • 2003
  • An effective die-polishing robot system is developed. ATC (Automatic Tool Change), tool posture angle control, and robot program for polishing application are developed and integrated into a robotic system that consists of a robot, pneumatic grinding tool, and grinding abrasives (papers and special films). ATC is specifically designed to exchange whole grinding tool set for complete unmanned operation. A tool posture angle control system is developed for the tools to maintain a specified skew angle rather than right angle on the surface for best finishing results. A PC and the robot controller control ATC and tool posture angle. Also, there have been more considerations on enhancing the performance of the system. Elastic material is inserted between the grinding pad and the holder for better grinding contact. Robot path data are generated automatically from the NC data of previous machining process.