• 제목/요약/키워드: Abrasive processing

검색결과 66건 처리시간 0.03초

Post-Cu CMP cleaning에서 연마입자 제거에 buffing 공정이 미치는 영향 (The effect of buffing on particle removal in Post-Cu CMP cleaning)

  • 김영민;조한철;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.537-537
    • /
    • 2008
  • Copper (Cu) has been widely used for interconnection structure in intergrated circuits because of its properties such as a low resistance and high resistance to electromigration compared with aluminuim. Damascene processing for the interconnection structure utilizes 2-steps chemical mechanical polishing(CMP). After polishing, the removal of abrasive particles on the surfaces becomes as important as the polishing process. In the paper, buffing process for the removal of colloidal silica from polished Cu wafer was proposed and demonstrated.

  • PDF

Assessment of cerchar abrasivity test in anisotropic rocks

  • Erarslan, Nazife
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.527-534
    • /
    • 2019
  • There have been developed a number of methods to assess the abrasivity of rock materials with the increased use of mechanized rock excavation. These methods range from determination of abrasive and hard mineral content using petrographic thin section analysis to weight loss or development of wear flat on a specified cutting tool. The Cerchar abrasivity index (CAI) test has been widely accepted for the assessment of rock abrasiveness. This test has been considered to provide a reliable indication of rock abrasiveness for isotropic rocks. However, a great amount of rocks in nature are anisotropic. Hence, viability assessment of Cerchar abrasivity test for the anisotropic rocks is investigated in this research. The relationship between CAI value and quartz content for the isotropic rocks is well known in literature. However, a correlation between EQ, F-Schimazek value, Rock Abrasivity Index (RAI) and CAI of anisotropic rocks such as phyllite was done first time in literature with this research. The results obtained with this research show F-Schimazek values and RAI values should be considered when determination of the abrasivity of anisotropic rocks instead of just using Cerchar scratch test.

반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작 (Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer)

  • 장경순;김태우;민경열;이정익;이기성
    • Composites Research
    • /
    • 제20권5호
    • /
    • pp.49-55
    • /
    • 2007
  • 반도체 쿼츠 웨이퍼 다이싱용 블레이드는 마이크로/나노 디바이스와 부품을 제조하기 위해 고정밀도의 가공성을 요구한다. 따라서 균일한 마이크로/나노 선폭의 가공을 위해서는 블레이드의 제작 단계에서 균일한 두께와 밀도를 유지하는 것이 중요하다. 기존의 실리콘웨이퍼 가공을 위해서는 금속의 블레이드가 사용되고 있지만 쿼츠 웨이퍼 가공을 위해서는 고분자 복합재가 사용된다. 이러한 복합재는 가공성, 전기전도성, 그리고 적절한 강도와 연성 및 마모저항성이 있어야 한다. 그러나 기존의 건식성형 공정으로는 균일성을 유지하기 위해 많은 공정과 비용이 소비되고 있다. 본 연구에서는 도전성 나노 세라믹스 분말, 연마재 세라믹스 분말에 열경화성 수지, 전도성 고분자를 혼합한 복합재 분말을 습식성형 공정에 의해 제조, 평가하는 연구를 수행하였다. 먼저 복합재 분말을 액상과 혼합하여 블레이드를 제작하였으며, 액상의 종류, 액상 건조공정의 영향을 고찰하였다. 평가는 마이크로미터 측정기와 현미경을 이용하여 두께를 측정하였다. 두께편차와 기공률, 밀도, 경도, 등의 특성을 비교, 평가하였다. 그 결과 습식성형에 의해 블레이드의 두께편차를 감소시킬 수 있었으며, 경도 등의 특성을 향상시킬 수 있었다.

알루미늄 압출용 금형의 내마모성향상을 위한 TiN, CrN 코팅 (TiN and CrN Coating for the Increase of Abrasive Resistance of Extrusion Mold for Aluminium)

  • 김민석;강승민;김동원;김상호
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.272-275
    • /
    • 2009
  • The purpose of this study is to show the friction and wear characteristic behaviors of TiN and CrN coated SKD61 which is applied to Al 6xxx extrusion mold material. The friction and wear characteristic behaviors of both coating layers were investigated by the reciprocating friction wear tester under atmospheric pressure and un-lubricated state. The processing parameters in this study were temperature (50 and $120^{\circ}C$) and load (3, 5, and 11 kgf). This study was carried out while comparing the coefficient of friction and microstructure of TiN and CrN coating layers on SKD61. The coefficient of friction of CrN became lower than that of TiN at all conditions. Therefore, CrN was suggested to be more advantageous than TiN for extrusion mold.

피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구 (Experimental study on micro-hole drilling of anodized aluminum using picosecond laser)

  • 오부국;방준호;김종기;임성묵;이승기;정수화;홍순국
    • 한국레이저가공학회지
    • /
    • 제17권2호
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

항공기 유압유 저장조 내면연마를 위한 슈퍼피니싱 장치 개발에 관한 연구 (Development of Superfinishing Machine to Polish the Inner Surfaces of Aircraft Hydraulic Oil Reservoirs)

  • 최수현;공광주;조영태
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.110-116
    • /
    • 2020
  • Aircraft hydraulic oil reservoirs made with aluminum 7075 have an anodized coating to enable airtightness and corrosion resistance. To maintain a stable oil pressure, the internal surface roughness of the reservoir should be less than approximately 0.2 ㎛. To this end, precision polishing must be performed. However, ensuring the processing quality is challenging, as most polishing operations are performed manually, owing to which, the inner surface roughness is not uniform, and the product quality is irregular. Therefore, we developed a special superfinishing machine to realize the efficient inner polishing of an aircraft hydraulic oil reservoir, by using an abrasive film to improve the process throughput and uniformity. In the experiment involving the superfinishing of an anodized aluminum 7075 cylinder specimen by using the proposed machine, a higher surface roughness than that achieved in the repetitive manual polishing process could be realized.

연속식 현미 조질기 개발 (Development of a Continuous Type Brown Rice Conditioning Equipment)

  • 송대빈;고학균
    • Journal of Biosystems Engineering
    • /
    • 제25권6호
    • /
    • pp.503-510
    • /
    • 2000
  • To improve the milling condition of brown rice a continuous type conditioning equipment was developed. To validate the performance of this machine the experimental operation was done at Sa-cheon RPC(Rice Processing Complex) using short grain rough. The initial moisture contents of brown rice were 15.0∼16.5%(w.b) and the flow rate of brown rice passing through the conditioner were 4,370kg per hour. The moisture content differences of brown rice between conditioned and non-conditioned were showed within 0.5%(w.b) This results means that the water injected to brown rice were absorbed to the surface of brown rice evenly. The moisture contents of conditioned treated milled rice were showed slightly higher than that of non-conditioned ones but it was considered that the conditioning process did not affected the weight increasing of milled rice by water supply. For initial moisture contents of 15.0∼16.5%(wb) brown rice it was found that the proper water supply rate was 0.115(cc-water)/(kg·%-brown rice) and the increments of whole rice were 2.2% compared to the non-conditioned ones. it was considered that the conditioning process did not influenced the whiteness of milled rice because the whiteness differences between conditioned and non-conditioned milled rice were negligible. About 18% of electric power which drives the abrasive type rice milling machine was saved at 0.115(cc-water)/(kg·%-brown rice) of water supply rate.

  • PDF

쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구 (A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment)

  • 장한석;김홍석;신기훈
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.

레이저 쇼크 피닝에 의한 2205 듀플렉스 스테인리스강의 표면 경도 향상과 표면 변화 관찰 (Improvement of Surface Hardness of 2205 Duplex Stainless Steel by Laser Shock Peening and Observations of Surface Changes)

  • 임현태;정회민;김필규;정성호
    • 한국레이저가공학회지
    • /
    • 제14권1호
    • /
    • pp.19-24
    • /
    • 2011
  • This work reports the results for laser shock peening of duplex stainless steel (22% Chromium - 5% Nickel) using a pulsed Nd:YAG laser (wavelength = 532nm, pulse width = 8ns). for the application to high-capacity pumps for seawater desalination plants. By properly selecting the process parameters such as laser intensity of 10GW/$cm^2$, laser pulse density of 75pulse/$mm^2$, and $100{\mu}m$ thick aluminum foil as an absorbent coating layer, the surface hardness of duplex stainless steel could be enhanced by 26%, from 256HV to 323HV with little changes in surface morphology and roughness. The depth of laser shock peened layer was measured to be around 2mm. The large enhancement of surface hardness is considered to have high practical importance in minimizing abrasive and corrosive deterioration of pump parts.

  • PDF

연삭기법을 이용한 패터닝 기술 (Grinding Technology for Surface Texturing)

  • 고태조;한두섭;구강;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.