• Title/Summary/Keyword: Abrasive film

Search Result 120, Processing Time 0.024 seconds

A Study on the Ultra-precision Mirror Finishing Using the System of Experiments (실험 계획법을 이용한 초정밀 연마 가공에 관한 연구)

  • Kim, Hong-Bae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.134-139
    • /
    • 1998
  • There have been so manu study in the ultra-precision mirror finishing. Already Using system of experiments extract factors effecting surface roughness and find optimal machining conditions in 40${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 15${\mu}{\textrm}{m}$ abrasive film. So in this study, Using Abrasive film of 12~3${\mu}{\textrm}{m}$ extract factors effecting surface roughness and results are follows; Factor A(film feed) in 12${\mu}{\textrm}{m}$ and 5${\mu}{\textrm}{m}$ abrasive film, Factor A(film feed) and B(applied force) in 9${\mu}{\textrm}{m}$ abrasive film, Factor C(grinding speed) in 3${\mu}{\textrm}{m}$ abrasive film are main factor effecting surface roughness.

  • PDF

Extraction of Factors Effecting Surface Roughness Using the System of Experiments in the Ultra-precision Mirror Surface Finishing (실험 계획법을 이용한 초정밀 경면 연마 가공에서 표면 거칠기에 영향을 미치는 인자의 검출)

  • 배명일;김홍배;김기수;남궁석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 1998
  • In this study, it is experimented to find factors effecting surface roughness using the system of experiments. in the mirror surface finishing system. (1) The film feed and oscillation frequency in $40{\mu}m$ abrasive film, grinding speed in $30{\mu}m$, and machining time in $15{\mu}m$15 are the main factors effecting the surface roughness. (2) Applying the optimal finishing condition to $40{\mu}m$, $30{\mu}m$, $15{\mu}m$ abrasive finishing film in sequence, it is possible to obtian about Ra 10 nm surface roughness on SM45C workpiece. (3) Application of the system of experments to the micro abrasive grain film finishing was very effective method in the extraction of main factor and optimal condition.

  • PDF

An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing (Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Lim, Dong-Wook;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.

A study on the Finishing Characteristics of Ultra-precision System (초정밀 가공시스템의 염마 가공 특성에 관한 연구)

  • Bae, Myung-Il;Kim, Hong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.11-16
    • /
    • 1999
  • In this study, Ultra-precision finishing system using micro abrasive film experimented using experimental variable film feed speed and grinding speed and structural steel(SM45C) with respect to 12~3{\mu}m$ micro abrasive film. the result are follows; (1) Experimental condition must setup dissimilar about each micro abrasive film. (2) To measurement deviation the smallest machined condition are 20mm/min in 12{\mu}m$, 5mm/min and 15mm/min in 9{\mu}m$ and 5{\mu}m$, 5mm/min in 3{\mu}m$ in film feed speed. (3) To measurement deviation the smallest machined condition are 180m/min in 12{\mu}m$, 84m/min in 9{\mu}m$, 56 and 84m/min in 5{\mu}m$, 104m/min in 3{\mu}m$ in grinding speed.

  • PDF

CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry ($BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel (스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

The Effect of Abrasive particles on Brake Performance (자동차 제동특성에 미치는 연마제의 영향에 관한 연구)

  • Hong, Young-Suk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.332-340
    • /
    • 2000
  • Friction properties of automotive brake pads containing different types of abrasivess were investigated. Five different abrasives, including o-quartz, magnesia, magnetite, alumina, zircon, were employed in this investigation and size effects of the abrasives on friction characteristics were also studied using 1, 50, 140$\mu\textrm{m}$ size zircon. Experimental results showed that the hardness and size of these abrasive particles were strongly related to friction behaviors and wear mechanisms. Harder and smaller abrasives showed higher friction coefficient and more wear. The surfaces of friction materials with different sizes of abrasives showed that two different modes of abrasion (two-body and three-body abrasion) appeared during sliding. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the types and sizes of abrasive particles. A mechanism of the wear mode transition (two-body to three body abrasive motion) was suggested considering the binding energy and friction energy in terms of abrasive particle size.

  • PDF

A Study on the Characteristics of the Mirror Surface Abrasive Finishing using Micro Abrasive Film (마이크로 필름을 이용한 경면연마가공 특성에 관한 연구)

  • 김홍배;배명일;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.970-976
    • /
    • 1997
  • The ultra-precision machining is widely used for final machining process of precision parts, so in this study, mirror surface finishing systems using the micro abrasive film, one of ultra-precision machining method, have to examine mirror surface characteristics of the cylindrical workpiece(SM45) such as surface roughness, workpiece removal and evaluated under the condition varing film feed rate, applied pressure, grinding speed after fixing other condition. It was found that varrious machining condition have significant influences on workpiece removal, surface roughness.

  • PDF

CMP of BTO Thin Films using Mixed Abrasive slurry (연마제 첨가를 통한 BTO Film의 CMP)

  • Kim, Byeong-In;Lee, Gi-Sang;Park, Jeong-Gi;Jeong, Chang-Su;Gang, Yong-Cheol;Cha, In-Su;Jeong, Pan-Geom;Sin, Seong-Heon;Go, Pil-Ju;Lee, U-Seon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.101-102
    • /
    • 2006
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant, It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the sell-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS). respectively. The removal rate of BTO thin film using the $BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%.

  • PDF