• 제목/요약/키워드: Abrasive

검색결과 995건 처리시간 0.029초

알루미나 연마제가 첨가된 실리카 슬러리의 CMP 특성 (CMP Characteristics of Silca Slurry by Adding of Alumina Abrasive)

  • 박창준;서용진;최운식;김철복;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.23-26
    • /
    • 2002
  • In this paper, We have studied the CMP (chemical mechanical polishing) characteristics of diluted slurry by adding of raw alumina abrasive and annealed alumina abrasive. As a experimental results, we obtained the comparable slurry characteristics compared with original silica slurry in the view point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

  • PDF

Preparation of Silicon Nitride-silicon Carbide Composites from Abrasive SiC Powders

  • Kasuriya, S.;Thavorniti, P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1091-1092
    • /
    • 2006
  • Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at $1400^{\circ}C$ under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of ${\alpha}-Si_3N_4$ and ${\beta}-Si_3N_4$ as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the $Si_3N_4$ content formed in the reaction.

  • PDF

초음속 연마가공 노즐의 성능개선에 관한 연구 (Improvement of the Performance of the Supersonic Abrasive Blasting Nozzle)

  • 곽지영;전익준;박세은;이열
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.9-15
    • /
    • 2016
  • The dynamics of gas-particle flow from a supersonic abrasive blasting nozzle have been studied by 1-D analytical calculation, including wall friction effects inside the nozzle. The developed code in the present study shows a satisfactory agreement with the other study's results. By utilizing the code, the redesign and optimization of the inner contour of a commercial abrasive blasting nozzle were carried out, and it was found that the redesigned nozzle in the present study can produce faster particle velocities at the nozzle exit by up to 22% compared with the original commercial nozzle.

마이크로 마스크를 가진 미세입자분사가공을 위한 가공경로의 생성 (Tool Path Generation for Micro-Abrasive Jet Machining Process with Micro-Mask)

  • 김호찬;이인환;고태조
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2011
  • Micro-abrasive jet machining(${\mu}AJM$) using mask is a fine machining technology which can carve a figure on a material. The mask should have holes exactly same as the required figure. Abrasive particles are jetted into the holes of the mask and it collide with the material. The collision break off small portion of the material. And the ${\mu}AJM$ nozzle should move all over the machining area. However, in general the carving shape is modeled as in a bitmap figure, because it often contains characters. And the mask model is also often modeled from the bitmap image. Therefore, the machining path of the ${\mu}AJM$ also efficient if it can be generated from the bitmap image. This paper suggest an algorithm which can generate ${\mu}AJM$ tool path directly from the bitmap image of the carving figure. And shows some test results and applications.

평면과 경사면의 자기연마가공에서 공정변수가 표면거칠기에 미치는 영향 (Performance Evaluation of Magnetic Abrasive Polishing by Design of Experiments)

  • 김상오;유만희;곽재섭
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.35-41
    • /
    • 2008
  • R/In order to satisfy the customer's variant needs for a product quality in recent years, a demand for developing higher precision machining technologies in a lot of application areas such as automobile, cellular phone and semiconductor has been increased more and more. Magnetic abrasive polishing(MAP) process is one of these precision technologies. In this study, to verify the parameters' effect of the MAP process on the surface roughness improvement of the plane and the inclined workpiece, well planned experiments which was called the design of experiments were carried out. Considered polishing factors were spindle speed, supplied current, abrasive type and working gap between the workpiece and the solid tool. As a result, it was seen that the supplied current and the working gap greatly affected the surface roughness improvement.

자유곡면의 밀링 자기연마 복합가공에 관한 연구 (Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface)

  • 곽태경;김상오;곽재섭
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

분자동역학 시뮬레이션을 이용한 나노스케일 표면 절삭에 관한 연구 (A Study on Nanoscale Surface Polishing using Molecular Dynamics Simulations)

  • 강정원;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.49-52
    • /
    • 2011
  • This paper shows the results of classical molecular dynamics modeling for the interaction between spherical nano abrasive and substrate in chemical mechanical polishing processes. Atomistic modeling was achieved from 3-dimensional molecular dynamics simulations using the Morse potential functions for chemical mechanical polishing. The abrasive dynamics was modeled by three cases, such as slipping, rolling, and rotating. Simulation results showed that the different dynamics of the abrasive results the different features of surfaces. The simulation concerning polishing pad, abrasive particles and the substrate has same results.

Fabrication of Porous Material Using Glass Abrasive Sludge

  • Chu, Yong-Sik;Kwon, Chun-Woo;Lee, Jong-Kyu;Shim, Kwang-Bo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.606-607
    • /
    • 2006
  • A porous material with a surface layer was fabricated using glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into pellets. These pellets were sintered in the range of $700-900^{\circ}C$ for 20min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and pores controlled the absorption ratio and physical properties.

  • PDF

탄소 섬유 강화 고분자 복합재의 연삭마모 특성에 관한 연구 (Study on Abrasive Wear Behaviour of a Carbon Fiber Composites)

  • 고성위;양병춘;김형진;김재동
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.46-51
    • /
    • 2006
  • Present study was investigated the effect of the particle of the counterface of unidirectional carbon fiber reinforced composite. The friction coefficient of composite and the specific wear rate different sliding velocity were measured for this materials. The friction track of counterface was observed by an optical microscope and scanning electron microscope. There were insignificant effects of the specific wear rate under lower Sic abrasive particle, however it showed high effect on $30{\mu}m$ abrasive particle size. There were significant effects of friction and wear behavior of the fiber direction under 0.3m/s sliding speed. Major failure mechanisms can be classified such as microfracture, plowing, microcutting, cutting and cracking.

  • PDF

STS304 위생용 파이프 내면의 정밀 자기연마 (Precision Magnetic Abrasive Polishing for Internal-face of STS304 Sanitary Pipe)

  • 김희남;최희성;유숙철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.166-169
    • /
    • 2005
  • The magnetic polishing is the useful method to finish using magnetic power of magnet. This method is one of precision polishing techniques and has an aim of the clean. technology using for the pure of gas and inside of the sanitary pipe for transportation. The magnetic abrasive polishing method is not so common for machine that it is not spreaded widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. In this paper. We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

  • PDF