• Title/Summary/Keyword: Abrasion rate

Search Result 169, Processing Time 0.027 seconds

Durability properties of mortars with fly ash containing recycled aggregates

  • Kurbetci, Sirin;Nas, Memduh;Sahin, Mustafa
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • The rapid development of the construction industry in the world causes a rapid increase in the consumption of aggregate resources, which leads to the depletion of existing aggregate reserves. The use of recycled aggregate in the production of concrete and mortar may be a good solution to reduce the use of natural raw materials and to reduce demolition waste in the environment. In this study investigating the use of recycled aggregate in mortar production, mortar mixtures were produced by substituting 0%, 25%, 50% and 100% fine recycled aggregate (FRA) instead of natural aggregate. The effect of 20% and 40% fly ash (FA) substitutes on cement mortar performance was also investigated. Compressive and flexural strength, drying shrinkage, abrasion resistance, water absorption and capillary water absorption were investigated on the produced mortars. The increase in the use of FRA reduced the compressive and flexural strengths of mortars. While the capillarity coefficients, water absorption, rapid chloride permeability and drying shrinkage of the mortars increased with the increase in the use of FRA, the effect of the use of fly ash on the rate of increase remained lower. The increased use of FRA has improved abrasion resistance as well.

Reducing the Rate of Defective to Improve a Welding Condition -Based on Six Sigma Process- (용접조건 개선으로 불량률 감소 -6시그마 프로세스를 중심으로-)

  • 박진영
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.1
    • /
    • pp.123-131
    • /
    • 2003
  • This paper considers a six sigma project for reducing the defects rate of the welding process in manufacturing firms. The project follows a disciplined process of five macro phases. define, measure, analyze, improve and control(DMAIC). The need of customers is used to identify critical to quality(CTQ) of project. And a process map is used to identify process input factors of CTQ. Four key process input factors are selected by using an input factor evaluation of teams; an interval of welding, an abrasion, an electric current and a moving freely. DOE is utilized for finding the optimal process conditions of the three key process input factors. Another one key input factor improved to welding machine. The six sigma level of defects rate becomes a 2.01 from a 1.61 at the beginning of the project.

Wear Characteristics of Plastic Pinion Against Steel Gear for Different Pitch Line Velocities (운전속도에 따른 플라스틱기어의 마멸특성)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1720-1729
    • /
    • 2001
  • Wear characteristics of Nylon and acetal pinions against steel gears for different pitch line velocities was studied with a power circulating gear test rig under unlubricated condition. Specific wear rate was measured as a function of tooth number, module, tooth width and total revolution. The worn tooth surfaces were examined with a profile projector. The Nylon pinion showed lower specific wear rate than the acetal pinion. However, the Nylon pinion was fractured at high tooth loads, whereas the acetal pinion exhibited a steady wear behavior. The wear characteristics of Nylon pinion varied significantly with the Pitch line velocity. Wear occurred most severely at the tooth tip and the region immediately below the pitch line of pinion. The dominant wear mechanisms were adhesion and abrasion.

Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature (교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화)

  • Yim, Chang-Dong;Shin, Kwang-Seon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

Erosion processes in bedrock river -A review with special emphasize on numerical modelling- (기반암 하상의 침식과정 -수치 모형을 중심으로 한 고찰-)

  • Kim, Jong-Yeon;Hoey, Trevor;Bishop, Paul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.11-29
    • /
    • 2006
  • A bedrock river is a channel in which bedrock is exposed along the channel bed or walls for at least approximately half of its length. In some case, a continuous alluvial veneer may be present, but this is completely mobilized during floods. From the point of long term landscape evolution during the Quaternary, the bedrock channel determines local base level and the lowering rate of bedrock channels controls the rate of erosion and transport processes and forms on the adjacent hillslopes. In this review, various erosional processes in bedrock river channels are classified and discussed. Especially, theoretical and numerical models on channel bed abrasion with bed load sediment particles are introduced and discussed.

  • PDF

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

A Study on the Removal of Deposited Calcium on the Cotton Fabric. (직물에 침착된 Calcium의 제거에 관한 연구)

  • Han Hae Won;Kahng He Won;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 1983
  • The purpose of this study was to investigate the effects of laundry variables and additives on the removal of deposited calcium on the cotton fabric. Samples of calcium deposited fabric was made by treating fabric with $CaC1_2$ and $Na_2CO_3$ solution subsequently. The experimental variables were: 1) NaOH concentration ($0.0001\%$, $0.0005\%$, $0.001\%$, $0.005\%$, $0.01\%$) 2) Alkaline builders(sodium carbonate, sodium meta silicate) 3) Sequestering agents(STPP and EDTA concentration: $0.02\%$, $0.04\%$, $0.06\%$, $0.08\%$, $0.1\%$, $0.15\%$, $0.2\%$) 4) Temperatures($25\pm1^{\circ}C$, $40\pm1^{\circ}C$, $60\pm1^{\circ}C$) 5) Edge-abrasion to the removal of deposited calcium on the cotton fabric. The fabric was washed for 15 minutes in a washing machine(Model: Gold Star WP-3007) or Launder-0-meter(40$\~$45 r.p.m., Toyo Rika Instrument Inc.) and rinsed 3 times per every rinsing time. The amount of calcium deposits on the fabrics was determined by EDTA-back titration methods and edge-abrasion was evaluated by ASTM D 3886 method. The results of this study were as follows: 1) pH of surfactant solution(NaOH concentration) did not influence on the removal of deposited calcium on the cotton fabric. 2) Added alkaline builders did not influence on the removal of deposited calcium on the cotton fabric. 3) It was shown that STPP and EDTA were effective to remove deposited calcium. The removal of deposited calcium on the cotton fabric was proportionally increased with increasing concentration of STPP and EDTA. At high concentration, however, the rate was rather decreased with increasing concentration. 4) The temperature of washing solution did not influence on the removal of dedosited calcium on the cotton fabric. 5) As the removal of deposited calcium on the cotton fabric was increased, the rate of edge-abrasion of the fabric was gradually increased.

  • PDF

Effects of chemical reaction on the polishing rate and surface planarity in the copper CMP

  • Kim, Do-Hyun;Bae, Sun-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Chemical mechanical planarization (CMP) is the polishing process enabled by both chemical and mechanical actions. CMP is used in the fabrication process of the integrated circuits to achieve adequate planarity necessary for stringent photolithography depth of focus requirements. And recently copper is preferred in the metallization process because of its low resistivity. We have studied the effects of chemical reaction on the polishing rate and surface planarity in copper CMP by means of numerical simulation solving Navier-Stokes equation and copper diffusion equation. We have performed pore-scale simulation and integrated the results over all the pores underneath the wafer surface to calculate the macroscopic material removal rate. The mechanical abrasion effect was not included in our study and we concentrated our focus on the transport phenomena occurring in a single pore. We have observed the effects of several parameters such as concentration of chemical additives, relative velocity of the wafer, slurry film thickness or ash)tract ratio of the pore on the copper removal rate and the surface planarity. We observed that when the chemical reaction was rate-limiting step, the results of simulation matched well with the experimental data.

A Study on Single Machine Scheduling with a Rate-Modifying Activity and Time-Dependent Deterioration After the Activity (복구조정 활동과 복구조정 후 시간경과에 따라 퇴화하는 작업시간을 갖는 단일기계의 일정계획에 관한 연구)

  • Kim, Byung Soo;Joo, Cheol Min
    • Korean Management Science Review
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • We consider the single machine scheduling problem with a rate-modifying activity and time-dependent deterioration after the activity. The class of scheduling problems with rate-modifying activities and the class of scheduling problems with time-dependent processing times have been studied independently. However, the integration of these classes is motivated by human operators of tasks who has fatigue while carrying out the operation of a series of tasks. This situation is also applicable to machines that experience performance degradation over time due to mal-position or mal-alignment of jobs, abrasion of tools, and scraps of operations, etc. In this study, the integration of the two classes of scheduling problems is considered. We present a mathematical model to determine job-sequence and a position of a rate-modifying activity for the integration problem. Since the model is difficult to solve as the size of real problem being very large, we propose genetic algorithms. The performance of the algorithms are compared with optimal solutions with various problems.

Development of A Laser Cladding Process Monitoring System (I) -Extraction of optimal process variables (레이저클래딩 공정 모니터링 시스템 개발 (I) - 최적공정변수 추출)

  • 오기석;윤길상;조명우;김문기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.89-92
    • /
    • 2000
  • Laser claddmg 1s thc deposition of material on the surface of a part or workpiece. Cladding of metals produces a 100% dense metallurgically-bonded coating with minimal dilution for enhanced corrosion, abrasion and wear resistance. Despite of minimal heat Input and reduced processing time, cladding quality 1s affected by various process condition such as laser power and feed rate. Therefore, it is necessary to develop the momtoring and control methods of laser cladding process for the best cladding quality. In this paper, laser cladding monitoring system using CCD camera for measuring cladding pool shape, and photo-diode sensor for detecting optical signal emitted from the cladding front is introduced The variables extracted using this system can be apphed to control the laser cladding system to achieve the best claddmg results..

  • PDF