• Title/Summary/Keyword: Abnormal State

Search Result 500, Processing Time 0.03 seconds

ADA: Advanced data analytics methods for abnormal frequent episodes in the baseline data of ISD

  • Biswajit Biswal;Andrew Duncan;Zaijing Sun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3996-4004
    • /
    • 2022
  • The data collected by the In-Situ Decommissioning (ISD) sensors are time-specific, age-specific, and developmental stage-specific. Research has been done on the stream data collected by ISD testbed in the recent few years to seek both frequent episodes and abnormal frequent episodes. Frequent episodes in the data stream have confirmed the daily cycle of the sensor responses and established sequences of different types of sensors, which was verified by the experimental setup of the ISD Sensor Network Test Bed. However, the discovery of abnormal frequent episodes remained a challenge because these abnormal frequent episodes are very small signals and may be buried in the background noise of voltage and current changes. In this work, we proposed Advanced Data Analytics (ADA) methods that are applied to the baseline data to identify frequent episodes and extended our approach by adding more features extracted from the baseline data to discover abnormal frequent episodes, which may lead to the early indicators of ISD system failures. In the study, we have evaluated our approach using the baseline data, and the performance evaluation results show that our approach is able to discover frequent episodes as well as abnormal frequent episodes conveniently.

Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis (커널회귀 모델기반 가스터빈 축진동 신호이상 분석)

  • Kim, Yeonwhan;Kim, Donghwan;Park, SunHwi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, the kernel regression model is applied for the case study of gas turbine abnormal state analysis. In addition to vibration analysis at the remote site, the kernel regression model technique can is useful for analyzing abnormal state of rotor vibration signals of gas turbine in power plant. In monitoring based on data-driven techniques correlated measurements, the fault free training data of shaft vibration obtained during normal operations of gas turbine are used to develop a empirical model based on auto-associative kernel regression. This data-driven model can be used to predict virtual measurements, which are compared with real-time data, generating residuals. Any faults in the system may cause statistically abnormal changes in these residuals and could be detected. As the result, the kernel regression model provides information that can distinguish anomalies such as sensor failure in a shaft vibration signal.

Abnormal State Detection using Memory-augmented Autoencoder technique in Frequency-Time Domain

  • Haoyi Zhong;Yongjiang Zhao;Chang Gyoon Lim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.348-369
    • /
    • 2024
  • With the advancement of Industry 4.0 and Industrial Internet of Things (IIoT), manufacturing increasingly seeks automation and intelligence. Temperature and vibration monitoring are essential for machinery health. Traditional abnormal state detection methodologies often overlook the intricate frequency characteristics inherent in vibration time series and are susceptible to erroneously reconstructing temperature abnormalities due to the highly similar waveforms. To address these limitations, we introduce synergistic, end-to-end, unsupervised Frequency-Time Domain Memory-Enhanced Autoencoders (FTD-MAE) capable of identifying abnormalities in both temperature and vibration datasets. This model is adept at accommodating time series with variable frequency complexities and mitigates the risk of overgeneralization. Initially, the frequency domain encoder processes the spectrogram generated through Short-Time Fourier Transform (STFT), while the time domain encoder interprets the raw time series. This results in two disparate sets of latent representations. Subsequently, these are subjected to a memory mechanism and a limiting function, which numerically constrain each memory term. These processed terms are then amalgamated to create two unified, novel representations that the decoder leverages to produce reconstructed samples. Furthermore, the model employs Spectral Entropy to dynamically assess the frequency complexity of the time series, which, in turn, calibrates the weightage attributed to the loss functions of the individual branches, thereby generating definitive abnormal scores. Through extensive experiments, FTD-MAE achieved an average ACC and F1 of 0.9826 and 0.9808 on the CMHS and CWRU datasets, respectively. Compared to the best representative model, the ACC increased by 0.2114 and the F1 by 0.1876.

Diagnosis of Cutting Stability of Portable Automatic Beveling Machine Using Spindle Motor Current (주축 모터를 이용한 포터블 자동 면취기의 가공 안정성 진단)

  • Kim, Tae Young;An, Byeong Hun;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.57-63
    • /
    • 2022
  • This study describes a system that monitors the tool and cutting state of automatic beveling operation in real time. As a signal for cutting state monitoring, a motor current detected from the spindle drive system of the automatic beveling machine is used to monitor abnormal state. Because automatic beveling is processed using a face milling cutter, the cutting force mechanism is the same as the milling process. The predicted cutting torque is obtained using a cutting force model based on specific cutting resistance. Then, the predicted cutting torque is converted into the spindle motor current value, and cutting state stability is diagnosed by comparing it with the motor current value detected during beveling operation. The experimental results show that the spindle motor current can detect abnormal cutting state such as overload and tool wear during beveling operation, and can diagnose the cutting stability using the proposed equip-current line diagram.

Implementation and Evaluation of Abnormal ECG Detection Algorithm Using DTW Minimum Accumulation Distance (DTW 최소누적거리를 이용한 심전도 이상 검출 알고리즘 구현 및 평가)

  • Noh, Yun-Hong;Lee, Young-Dong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Recently the convergence of healthcare technology is used for daily life healthcare monitoring. Cardiac arrhythmia is presented by the state of the heart irregularity. Abnormal heart's electrical signal pathway or heart's tissue disorder could be the cause of cardiac arrhythmia. Fatal arrhythmia could put patient's life at risk. Therefore arrhythmia detection is very important. Previous studies on the detection of arrhythmia in various ECG analysis and classification methods had been carried out. In this paper, an ECG signal processing techniques to detect abnormal ECG based on DTW minimum accumulation distance through the template matching for normalized data and variable threshold method for ECG R-peak detection. Signal processing techniques able to determine the occurrence of normal ECG and abnormal ECG. Abnormal ECG detection algorithm using DTW minimum accumulation distance method is performed using MITBIH database for performance evaluation. Experiment result shows the average percentage accuracy of using the propose method for Rpeak detection is 99.63 % and abnormal detection is 99.60 %.

Abnormal state diagnosis model tolerant to noise in plant data

  • Shin, Ji Hyeon;Kim, Jae Min;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1181-1188
    • /
    • 2021
  • When abnormal events occur in a nuclear power plant, operators must conduct appropriate abnormal operating procedures. It is burdensome though for operators to choose the appropriate procedure considering the numerous main plant parameters and hundreds of alarms that should be judged in a short time. Recently, various research has applied deep-learning algorithms to support this problem by classifying each abnormal condition with high accuracy. Most of these models are trained with simulator data because of a lack of plant data for abnormal states, and as such, developed models may not have tolerance for plant data in actual situations. In this study, two approaches are investigated for a deep-learning model trained with simulator data to overcome the performance degradation caused by noise in actual plant data. First, a preprocessing method using several filters was employed to smooth the test data noise, and second, a data augmentation method was applied to increase the acceptability of the untrained data. Results of this study confirm that the combination of these two approaches can enable high model performance even in the presence of noisy data as in real plants.

Abnormal Behavior in Color Tracking in the Fringe-Field Switching (FFS) Liquid Crystal Display

  • Jung, Jun-Ho;Ha, Kyung-Su;Chae, Mi-Na;Cho, In-Young;Kim, Woo-Il;Kim, Dae-Hyun;Kim, Sung-Min;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.616-619
    • /
    • 2009
  • Color tracking behavior of in the fringe-field switching (FFS) mode using a liquid crystal with positive dielectric anisotropy has been studied. In the in-plane switching and vertical alignment devices, color chromaticity at normal direction changes from bluish to yellowish white linearly with increasing grey levels from dark to white state. Interestingly, abnormal behavior in color tracking is observed in FFS devices using a liquid crystal with positive dielectric anisotropy, that is, it changes from bluish to yellowish up to a certain middle grey level but turns over to bluish white with further increasing from a grey level to a fully white state. In this paper, we analyze this abnormal effect from the calculated and experimental results.

  • PDF

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

Identification of Abnormal Compressor using Wavelet Transform (Wavelet 변환에 의한 압축기의 이상상태 식별)

  • 정지홍;이기용;김정석;이감규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.361-364
    • /
    • 1995
  • Wavelet Transform is a new tools for signal processing, such as data compressing extraction of parameter for Reconition and Diagnostics. This transform has an advandage of a good resolution compared to Fast Fourier Transform (FFT) In this study, we employ the wavelet transform for analysis of Acoustic Emission raw signal generated form rotary compressor. In abnormal condition of rotary compressor, the state of operating condition can be classified by analizing coefficient of wavelet transformed signal.

  • PDF

Monitoring of Wafer Dicing State by Using Back Propagation Algorithm (역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF