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a b s t r a c t

The data collected by the In-Situ Decommissioning (ISD) sensors are time-specific, age-specific, and
developmental stage-specific. Research has been done on the stream data collected by ISD testbed in the
recent few years to seek both frequent episodes and abnormal frequent episodes. Frequent episodes in
the data stream have confirmed the daily cycle of the sensor responses and established sequences of
different types of sensors, which was verified by the experimental setup of the ISD Sensor Network Test
Bed. However, the discovery of abnormal frequent episodes remained a challenge because these
abnormal frequent episodes are very small signals and may be buried in the background noise of voltage
and current changes. In this work, we proposed Advanced Data Analytics (ADA) methods that are applied
to the baseline data to identify frequent episodes and extended our approach by adding more features
extracted from the baseline data to discover abnormal frequent episodes, which may lead to the early
indicators of ISD system failures. In the study, we have evaluated our approach using the baseline data,
and the performance evaluation results show that our approach is able to discover frequent episodes as
well as abnormal frequent episodes conveniently.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A complete data analytics system gathers data first and then find
information from the data and display the knowledge to the user.
These systems involve many operations such as gathering, selec-
tion, preprocessing, transformation, data mining, evaluation, and
interpretation [1,2]. However, the data analysis focused on this
paper is responsible for finding the hidden patterns/rules/infor-
mation from the data. Most data analytics research employ either
statistical or machine learning algorithmsdclustering, classifica-
tion, association rules, and sequential patternsdto analyze the data
and find the hidden information from the raw data [3]. Thus, one
can modify these algorithms to enhance the performance of the
data analysis.

Nowadays, the data that need to be analyzed are large, high
dimensional, heterogeneous, complex, unstructured, incomplete,
noisy, erroneous, and streaming in nature. These unique features of
big data always challenge the statistical and data analysis
by Elsevier Korea LLC. This is an
approaches [4]. According to research results [5,6], and [7], most
data analysis methods have issues of non-scalability, non-dynamic,
and uniform data structure for big data. Because the traditional
data analysis methods are not designed for large-scale, complex,
and streaming data, redesigning and changing the data analysis
methods are the new trends for big data analysis.

In the last few years, researchers at Savannah River National
Laboratory (SRNL) have established an In-Situ Decommissioning
(ISD) Sensor Network Test Bed, a unique, small scale, and config-
urable environment, for the assessment of prospective sensors on
actual ISD systemmaterial, at a minimal cost [8,9]. During the years
of 2011e2014, a large data set was collected in the process of testing
and collecting baseline data [10]. All these data are time-specific,
age-specific, and developmental stage-specific. This baseline data
is quite big and ideal for incremental data analytics to validate ISD
system performance and predict possible system failures (or future
accidents) by detecting abnormal patterns (or frequent episodes) in
the presence of background noise.

Frequent Episode Mining (FEM) is a widely accepted framework
for discovering hidden patterns from time-series data, sequence
data, and online stream data [11]. With the fast-growing data from
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heterogenous sensors, in time-critical applications many episodes
may become obsolete while new useful episodes keep emerging.
So, there is always need of advanced, fast, and automatic solutions
to discover all the hidden patterns, latest frequent episodes and
abnormal frequent episodes from fast-growing data.

The traditional statistical and data analysis methods aren't ideal
for large-scale, complex, and streaming data. Redesigning and
changing the data analysismethods are the new trends in advanced
data analysis. This paper introduces a new approach, advanced data
analytics system, for real-time analysis of the baseline data while
at-rest as well as in-motion by showing intermediate results as
soon as they become available. This should allow the data analyst to
take decisions in real-time. In this paper, we focused on data ana-
lytics, feature engineering, and machine learning methods of the
advanced analytics engine. We introduce three new features in
feature engineering: mean, median, and standard deviation to deal
with background noise and improve the machine learning model
accuracy. The machine learning models (i.e., baseline models) such
as Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree
(DT), etc., are used as advanced analytics to identify normal and
abnormal frequent episodes.

The rest of the paper is structured as follows: Section II over-
views the prior work on the concept of advanced analytics. Section
III describes the proposed state-of-the-art advanced data analytics
engine to achieve interactive analysis for baseline Data. Section IV
discussed the results. Finally, Section V concludes the paper.

2. Prior work

In-Situ Decommissioning (ISD) Sensor Network Test Bed
collected the baseline raw data during the year 2011e2014 [10]. It
has 273,078 records, including battery information, strain infor-
mation, temperature information from the 4 thermocouples
epoxied inside the two concrete blocks, and tiltmeter data. The
units of these data are Volt, Celsius, angle degrees, mstrains, etc. All
the records were time-stamped in the format of "mm:dd:yyyy hh:
mm" and collected in 5 min intervals. Thus, most of the data points
were continuous except when the system was turned off for trou-
bleshooting purposes.

Many real world applications were benefited from the temporal
data mining (TDM) algorithm [12e14]. TDM is applied to discover
the frequent patterns (or temporal episodes) [15], and these pat-
terns are referred to as episodes that are ordered collections of
events (i.e., abnormal sensor response). The work proposed by Sun
et al. [10] is based on the temporal data mining (TDM) framework,
which is a combination of the frequent episode discovery model
and Hidden Markov Models (HMM). For instance, (RA /RB /RC)
represents an episode where the events occurred in a timely order,
i.e., first RA occurred, then RB, and then RC. According to the au-
thors (Sun et al., 2018), the TDMmethod discovered some frequent
episodes, but it did not "dig out" many abnormal frequent episodes.
Also, it was not clear how often an abnormal frequent episode will
lead to a certain significant "incident" in the ISD system. These
confusions may be due to: (1) rare existence of the abnormal
frequent episodes under normal conditions. It may be possible that
the baseline data did not record toomany points in sudden changes
of system. (2) the fact that these abnormal frequent episodes are
very small signals, and they may be buried in the background noise
of voltage and current changes.

Xiang et al. [16] proposed a special-purpose algorithm to
improve the local mining performance on Frequent Episode Mining
(FEM) for “big” event sequences. The events were arranged in a
predefined hierarchy i.e. the events from different levels of the
hierarchy were partitioned based on event-centered and hierarchy-
aware partitioning strategy before feed to local processes. Philippe
3997
et al. [17] worked on high utility episode mining that consists of
high importance (e.g high profit) episodes in a sequence of events
with quantities and weights. Their proposed algorithm named
HUE-Span finds all patterns by taking into account all timestamps
of minimal occurrences for utility calculations.

Maryam et al. [18] investigated a prediction model based on
episode mining with the capability of online learning. Their pro-
posed model considered the correlation between different re-
sources and extracts behavioural patterns of applications
independently of the fixed pattern length explicitly and their
experimental results showed that the proposed model adapts to
the behavioural changes of the application and learns the new
behavioural patterns rapidly. Another online frequent episode
mining method was proposed by Tao et al. [19]. They studied
multiple continuous, unbounded and time-varying online data
streams which were combined into a global data lattice based on
sequence features. Then used the frequent episode tree to detect
the expanding online serial episodes and parallel episodes from the
data lattice and finally merge mixed episodes into existing serial
and parallel frequent episodes.

All the above mentioned prior works were focused to determine
frequent episodes and very specific to special applications in their
domain. The limitation of most of the prior works were experi-
mented with synthetic data and few were experimented with
proprietary application specific dataset where there was no evi-
dence of important information buried under the background noise
of voltage and current changes. So, we revisited our prior work to
continue further investigation.

In our prior work (Biswal et al. [20]), we used three statistical
analytics methods: Linear Regression, Correlation, and Clustering, to
determine the frequent episodes and abnormal frequent episodes.
However, these methods failed to discover many abnormal frequent
episodes, sowe conducted further analysis called "peak" analysis [21]
and with analysis, wewere able to discovermany abnormal frequent
episodes. To determine if there is any pattern of abnormal frequent
episodes (i.e., how often an abnormal frequent episode occurs), we
looked at the distribution of the abnormal frequent episodes in the
entire dataset. Unfortunately, the distribution didn't show any clear
pattern of abnormal frequent episodes. So, we can't determine that
the occurrence of abnormal frequent episodes will lead to a certain
significant "incident" in the ISD system. The occurrence of abnormal
frequent episodes may be due to weather changes such as rain or
cloudy conditions or the occasionalmovement of sensors/equipment
by technicians. Another possibility is that the abnormal frequent
episodes are very small signals, and these may be buried in the
background noise of voltage and current changes.

Compared to prior works, the approach introduced in this paper
aims to deal with more frequent episodes discovery in the presence
of background noise to detect the failure in the ISD system. We
propose to build an Advanced Analytics Engine that will implement
data analytics, feature engineering, and machine learning to
discover frequent episodes in the baseline data.

3. Advanced analytics engine

We propose an advanced analytics architecture based on three
main components (see Fig. 1): Data Layer, Advanced Analytics En-
gine, and Visualization Layer. The raw data are collected from the
ISD Test Bed sensors. The data is time-series data (i.e., collected
every 5 min interval, 24 by 7, and from years 2010e2014) and also
includes outliers or noise due to the malfunctioning of many sen-
sors. The raw form of data includes 72 columns and almost 600 MB
(megabytes). Then, data preprocessing is performed to remove the
noisy data caused by sensor malfunctioning. Below we discussed
the steps to remove data outliers.



Fig. 1. Advanced analytics engine.
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The following steps are carried out for the preprocessing of our
data:

a) Load data to RStudio.
b) Look at the structure of the data to see if the data is of the

correct type.
c) Looking at the result, everything is string. So, we need all as

numeric types except TIMESTAMP.
d) Columns with �99999 or �88888 are outliers or noise.

Determine which columns have outliers.
e) Replace columns with �88888 or �99999 with NA.
f) Delete columns with NA values.
g) Then, add three new columns (Year, Month, andWeekDay) to

the clean data for the data analysis phase.

The Advanced Analytics Engine has three components: Data
Analytics, Feature Engineering, and Machine Learning. In addition,
the analytics engine can process data in two modes: Statistical
Analytics and Advanced Analytics.

Statistical analytics are applied to identify frequent episodes in
the data, which may lead to the early indicators of ISD system fail-
ures. Three statistical analytic methods: Linear Regression, Correla-
tion, and Clustering are applied to the data, and their results are
discussed in the result section. We choose these statistical methods
because we would like see how well temperature sensors THT1,
THT2, and THT4 follow the sensor THT3 values. Linear regression
predicts a continuous value of an output variable (e.g. THT1, THT2, or
THT4) as a linear function of input variable THT3. While Correlation
measures the degree to which the input and output variables in-
crease or decrease together (e.g. THT1 vs THT3, THT2 vs THT3, and
THT4 vs THT3). Finally, Clustering analysis groups variables together
based on the similarity of data points and data patterns.

Advanced Analytics mode, which includes feature engineering
and machine learning. Advanced analytics are applied to discover
abnormal frequent episodes in the baseline data, leading to the
early indicators of ISD system failures. Feature engineering and
machine learning methods aim to deal with more abnormal
frequent episodes discovery in the presence of background noise. In
the feature engineering method, we introduce three new features,
mean, median, and standard deviation [22] to deal with the
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presence of background noise and to enhance themachine learning
accuracy of frequent episodes discovery. Popular machine learning
models (i.e., baseline models) such as Support Vector Machine
(SVM), Naive Bayes (NB), Random Forest (RF), etc., are used to
identify normal and abnormal frequent episodes from the heter-
ogenous sensor data.
4. Results

4.1. Data visualization and data analysis

It is always ideal for visualizing data before we perform data
analysis. Details on the heterogeneous sensor dataset can be found
on the referenced paper Biswal et al. [20]. Fig. 2 shows the plot of the
temperature sensors. First, we produce the frequent episodes for the
temperature sensors in the order THT3/THT4/THT2/THT1 as
reported by Sun et al. [10]. THT1 and THT2, correspond to temper-
ature sensors on the front side (facing west) of the first block and
trend each other. THT3 is the control sensor attached to the frame
and is directly exposed to the sun and unshielded from the daily
weather conditions. This sensor appears noisy because it is faster to
respond to temperature fluctuations relative to the sensors insulated
by the cement and epoxy. The THT4, is the temperature sensor facing
east along with the THT3 sensor and grouted into 75e100mm inside
a 100-mm diameter hole compared to THT1 and THT2, which are
cemented and epoxyed about 50mm in holes that are approximately
75-mm deep and 25-mm wide. THT4 is supposed to respond last
when compared to THT2 and THT1 but, THT4 sees a temperature
increase first, which may be due to void spaces introduced during
sensor placement.

In our preliminary work, we used three statistical analytic
methods: Linear Regression, Correlation, and Clustering to deter-
mine the frequent episodes. In Linear Regression (LR) analysis THT3
is the control sensor, so we consider THT3 as the independent
variable while the other three sensors as dependent variables. Code
below provided the Linear Regression analysis of temperature
sensors for a 6-month period of data from the year 2011. In this
analysis, THT3 is considered as the reference sensor because it is
facing east to the sun.



Fig. 2. Different temperature sensor responses.

Linear regression R code and analysis results.
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From the above analysis results, the p-value is less than 0.05
which means with a 95% confidence level, the NULL hypothesis is
rejected.

� Null hypothesis - > There exists no relationship between THT1
and THT3

� Alternate Hypothesis - > There exists a relationship between
THT1 and THT3
Fig. 3. Residual plot for THT4 and THT3.
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However, the R-squared value is small compared to the
maximumvalue of the R-squared value of 1.0, whichmeans that the
linear regression model cannot explain the relationship better (i.e.,
if the R-squared value approaches to 1, then the model explains the
relationship better). So, we then looked at the residual plot be-
tween THT4 and THT3 as shown in Fig. 3, it should have proved the
normality assumption (i.e., fit to bell curve), but in our case, it didn't
fit the bell curve shape. Also, we have looked at other residual plots
(THT2 vs. THT3), (THT1 vs. THT3), but none fit the bell curve.
Looking at our analysis results, one can notice that the most
frequent episodes are THT3/THT4/THT2/THT1. More case
studies can be found in Biswal et al. [20].

To confirm the frequent episodes, we performed the Correlation
method as the second analysis. Fig. 4 shows the correlation between
THT1, THT2, THT3, and THT4 for the year 2011. Based on the coeffi-
cient values, one can see that the temperature variation sequence
THT3/THT4/THT2/THT1. Furthermore, we performed clus-
tering analysis to confirm frequent episodes. The clustering method
"pvclust" is an R package for assessing the uncertainty in hierarchical
cluster analysis [23]. For each cluster in hierarchical clustering,
quantities called p-values are calculated via multiscale bootstrap
resampling. The P-value of a cluster is a value between 0 and 1, which



Fig. 4. Correlation Coefficient, Histogram plot, and data point distributions.

Fig. 5. Clustering between THT1, THT2, THT3 and THT4.
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Fig. 6. A week data plot of June 2011.

Fig. 7. A month data plot of July 2011.

Fig. 8. Distribution of AFE (Monthly from 2011 to 2014).

Fig. 9. FFT analysis.
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indicates how strong the cluster is supported by data. The clustering
function "pvclust" provides two types of p-values: AU (Approxi-
mately Unbiased) p-value and BP (Bootstrap Probability) value. AUp-
value, which is computed by multiscale bootstrap resampling, is a
better approximation to unbiased p-value than BP value computed
by normal bootstrap resampling. Fig. 5 shows the clustering between
THT1, THT2, THT3, and THT4. Thus, for a cluster with AU p-value >
0.95, the hypothesis that "the cluster does not exist" is rejected with
a significance level of 0.05. All the above analytics methods that are
used for the discovery of frequent episodes has demonstrated the
existence of correlation among the sensors THT1, THT2, THT3, and
THT4. However, these methods failed to discover many abnormal
frequency episodes. So, we conducted further analysis called "peak"
analysis using the local maxima method. This analysis is performed
on a week data, and a month data to find out any abnormal frequent
episodes, as shown in Fig. 6, and 7 respectively. The sensitivity of the
peak detection procedure can be adjusted by a control parameter' m',
larger m value results fewer peaks and smaller m value results more
peaks. The detected number of abnormal frequent episode statistics
are 19, 52, 56, and 3 for years 2011, 2012, 2013, and 2014 respectively
using peak analysis. Only 3 abnormal frequent episodes are in the
year 2104 because we have only less than a month of data (only 27
days of data). More case studies can be found in Biswal et al. [20].

To find out if there exists any pattern of abnormal frequent
episodes (i.e., how often an abnormal frequent episode occurs), we
looked at the distribution of the abnormal frequent episodes that
are occurred in the entire dataset. Fig. 8 shows the distribution of
abnormal frequent episodes for each month starting from the year
2011e2014. One can see that the distribution is random which
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means that there exists no clear pattern of abnormal frequent ep-
isodes. So, we 'can't be able to determine that the occurrence of
abnormal frequent episodes will lead to a certain significant
"incident" in the ISD system. The occurrence of abnormal frequent
episodes may be either due to weather changes such as rain or
cloudy conditions, or due to occasional movement of sensors/
equipment by technicians. Another possibility is that the abnormal
frequent episodes are very small signals, and thesemay be buried in
the background noise of voltage and current changes. So, we'll be
using the advanced analytics method using machine learning and
feature engineering to discover any buried abnormal frequent ep-
isodes in background noise.
4.2. Feature engineering

SRNL site was identified by DOE-EM [24] to implement ISD
Sensor Network Test Bed to provide an understanding of signal
responses from the concrete blocks of the P-Reactor facility. A
remote sensor monitoring system was deployed [25] to study the
aging structures of concrete blocks, understand the likely changes
over time in and around the ISD facility. The collected sensor data
may have background noise voltage and current changes, which
would hide certain significant "incidents" in the ISD system. So, we
considered three new features such as mean, median, and standard



Table 1
Evaluation results for imbalanced class data.

Model Accuracy Precision Recall F1-measure

LR 0.96 0.6 0.18 0.27
LDA 0.95 0.411 0.47 0.43
KNN 0.956 0.375 0.06 0.1
DT 0.934 0.23 0.21 0.22
NB 0.689 0.084 0.64 0.148
SVM 0.96 0.575 0.14 0.22

Fig. 11. Distribution of Balanced samples.
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deviation to filter out the noise and identify patterns. Our data is
time-series data; the mean feature is calculated through the
exponential moving average method [26] with a sliding window
size of 3. We kept a smaller window size of 3 because of the nature
of our data, and a smaller window size has increased sensitivity to
changes. But, again, a larger window size would have suppressed
some of the potential peaks buried under the small background
noises. Thus, a smaller window size of 3 is preferred for our data.
Similarly, we also computed moving median and standard devia-
tion with a sliding window size of 3.

Through peak analysis we are able to discover many abnormal
frequent episodes at random but it didn't show any occurrence of
patterns. So, in this work we deployed machine learning models to
discover more abnormal frequent episodes. We added a fourth
feature, "fft-freq," to our dataset so that the machine learning
model can have access to the most important frequency signal
features. The "Date Time" column is converted to sine and cosine
signals and processed through FFT (Fast Fourier Transform) [27] to
calculate the "fft-freq" feature.

4.3. Presence of noise analysis

Noise analysis is mainly focused on dealing with background
noise in data and discovering more abnormal frequent episodes. So,
we performed a Fourier transform analysis to see the presence of
noise [28] in the data. Fig. 9 shows the FFT analysis plot for THT3,
and we can see there are many small-amplitude noise signals along
with some distinctive "peak" frequency signals. The presence of
noise signals may be due to external factors or due to the improper
installation of sensors.

4.4. Training and testing dataset

We represent the discovery of abnormal frequent episodes as a
problem of a binary classification problem. The baseline dataset
didn't include any categorical information that could be easily used
by our machine learning models for the training and testing pro-
cess. So, we added a column to the dataset called "class" label to
Fig. 10. Distribution of im
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identify normal and abnormal frequent episodes. Based on our
previous work, we identify an instance of a data as "abnormal" if a
peak is detected; otherwise, it is noted as "normal". Numeric value
1 is used for "abnormal" and 0 for “normal”. Next, we looked at the
distribution of sample examples in the dataset. Fig. 10 shows the
distribution of samples in our dataset, and it is clear that we have a
challenge of an imbalanced classification problem [29]. So, the
"normal" instances are majority class, and the "abnormal" exam-
ples are minority class. The training and testing datasets are created
with the most common split percentages 70%e30%.
balanced samples.



Table 2
Evaluation results for balanced class Data.

Model Accuracy Precision Recall F1-measure

LR 0.59 0.602 0.554 0.573
LDA 0.59 0.606 0.564 0.578
KNN 0.63 0.637 0.605 0.61
DT 0.564 0.544 0.502 0.554
NB 0.545 0.534 0.707 0.601
SVM 0.565 0.559 0.585 0.566
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4.5. Classification results

Table 1 shows the evaluation of models (prediction results) on
the imbalanced data. Even though the prediction accuracy is high, it
is inappropriate because of the imbalanced classification problem.
So, the precision, recall, and F1-measure are used to evaluate the
performance of the models on the minority class. The results are
shown in Table 1 are based on the most commonly used 10-fold
cross-validation. Next, we select the under-sampling method [30]
to address the imbalanced classification problem because, in our
dataset, the majority class instances are 272936, and minority class
instances are 142. Fig. 11 shows the distribution of samples after
under-sampling. Table 2 shows the evaluation results of the models
on balanced data, and we can see that both the classes are
emphasized with reduced accuracy.

In Table 2, the metric “accuracy” emphasizes the “normal” in-
stances in the dataset. However, our focus is the “abnormal” in-
stances and how well the models capture through labelling. So, we
are more interested in metrics “Precision” and “Recall”. Precision
tells how precise is that model (i.e. how many of the predicted
“abnormal” instances are actually “abnormal”). Where as the Recall
tells us which model to select as our best model. So, based on the
metrics “Precision” and “Recall”, there are two models “KNN” and
“NB”; but we prefer a balanced between Precision and Recall which
is metric “F1-Score measure”. Based on the F1-score we select
“KNN” is the best model for classification of “normal” and
“abnormal” frequent episodes.
5. Conclusions and future work

In this paper, we introduce an advanced analytics engine (ADA)
that is data analytics, feature engineering, and machine learning
framework to determine abnormal frequent episodes. We evalu-
ated the data analysis approach using the baseline data. The per-
formance evaluation results show that our approach is able to
determine more normal frequent episodes and abnormal frequent
episodes.

For our future work, we'll be extending our advanced analytic
engine framework to add more features, derived from the data.
With more features available to our learning method, more
abnormal frequent episodes may become visible in the presence of
noise, and then it will be practical to estimate the likelihood of
significant "incident" and possible system failure in the ISD system.
Also, we will be applying our advanced analytic engine framework
to newly collected data to discover abnormal episodes in the
presence of background noise.
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