• Title/Summary/Keyword: Abnormal Signal

Search Result 426, Processing Time 0.028 seconds

Improvement of Noise Characteristics in Super-RENS Disc (Super-RENS 디스크의 노이즈 특성 향상)

  • Kim, Joo-Ho;Hwang, In-Oh;Kim, Hyun-Ki;Park, In-Sik;Bae, Jae-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • The research topic of super-RENS technology is shifting from the signal intensity (CNR; Carrier to Noise Ratio) to the signal uniformity (Jitter or bER). To achieve an uniform signal characteristics, it is important to reduce signal fluctuation in a super-RENS disc. In this study, we investigated the relation between signal fluctuation and low frequency noise (LFN), and analyzed LFN increase in recording and readout processes. It was found that signal fluctuation had a close relationship with the LFN. Also, it was found that the recorded mark shape such a bubble type and high readout power increased the LFN in recording and readout process of a super-RENS disc. So, using non-bubble type recording material and low super-resolution readout material, we markedly improved the LFN in a super-RENS disc.

  • PDF

Development of Misfire Detection Using Spark-plug (스파크플러그를 이용한 실화감지에 관한 연구)

  • 채재우;이상만;정영식;최동천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 1997
  • Internal combustion engine is the main source of environmental pollutants and therefore better technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, harmful elements from the exhaust gases are caused by incomplete combustion of mixture inside the engine cylinder and this abnormal combustion like misfire or partial burning is the direct cause of the air pollution and engine performance degradation. the object of this research is to detect abnormal combustion like misfire and to keep the engine performance in the optimal operating state. Development of a new system therefore could be applied to a real car. To realize this, the spark-plug in a conventional ignition system is used as a misfire detection sensor and breakdown voltage is analyzed. In this research, bias voltage(about 3kV) was applied to the electrodes of spark-plug and breakdown voltage signal is obtained. This breakdown voltage signal is analyzed and found that a combustion phenomena in engine cylinder has close relationship with harmonic coefficient K which was introduced in this research. Newly developed combustion diagnostic method( breakdown voltage signal analysis) from this research can be used for the combustion diagnostic and combustion control system in an real car.

  • PDF

Realtime Wireless Monitoring of Abnormal ST in ECG Using PC Based System

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.176-180
    • /
    • 2004
  • The ST-segment that the beginning part of T wave is the important diagnostic parameter to finding myocardial ischemia. Abnormal ST appears in two types. One is the level change, and the other is the pattern change. In this paper, we describe the monitoring of abnormal ST using PC based system. Hardware of this system consists of transmitter, receiver and PC. The function of transmitter is measuring ECG in three channels which are selected manually and transmitting the data to receiver by digital radio way. Connection with receiver and PC is by RS232C, and the data received on the PC is analyzed automatically by ECG analysis algorithm and saved to file. In the algorithm part for detecting abnormal ST, ST-segments are approximated by a polynomial. This method can detect all of the deviation and pattern change of ST-segment regardless the change in the heart rate or sampling rate. To gain algorithm reliability, the method rejects distorted polynomial approximation by calculation the difference between the approximated ST-segment and original ST-segment. In pre-signal processing, the wavelet transformation separates high frequency bands including QRS complex from the original ECG. Consequently, the process improves the performance of detecting each feature points.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF

Blind Signal Separation Method using Hough Transform (Hough 변환을 이용한 암묵신호분리방법)

  • Lee, Haeng Woo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2014
  • This paper is on the blind signal separation(BSS) method by the geometric method. To separate the signal sources, we use Hough transform and BSS. Hough transform is a geometric method which let us know the local informations of the signal. We find the orientations of signals by Hough transform and know the number of signal sources. When the number of sensors is more than the number of sources. the BSS algorithm can separate the mixtures well in the time domain. This algorithm has a good performance in converging fast. We had checked up the quality of the algorithm after separating the mixed signals. The results of simulations show that this BSS method has the abnormal waveforms due to unconverging coefficients in the beginning, and stably has the separated waveforms which almost equal to the sources in the most period.

Abnormality Detection of ECG Signal by Rule-based Rhythm Classification (규칙기반 리듬 분류에 의한 심전도 신호의 비정상 검출)

  • Ryu, Chun-Ha;Kim, Sung-Oan;Kim, Se-Yun;Kim, Tae-Hun;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.405-413
    • /
    • 2012
  • Low misclassification performance is significant with high classification accuracy for a reliable diagnosis of ECG signals, and diagnosing abnormal state as normal state can especially raises a deadly problem to a person in ECG test. In this paper, we propose detection and classification method of abnormal rhythm by rule-based rhythm classification reflecting clinical criteria for disease. Rule-based classification classifies rhythm types using rule-base for feature of rhythm section, and rule-base deduces decision results corresponding to professional materials of clinical and internal fields. Experimental results for the MIT-BIH arrhythmia database show that the applicability of proposed method is confirmed to classify rhythm types for normal sinus, paced, and various abnormal rhythms, especially without misclassification in detection aspect of abnormal rhythm.

Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis (커널회귀 모델기반 가스터빈 축진동 신호이상 분석)

  • Kim, Yeonwhan;Kim, Donghwan;Park, SunHwi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, the kernel regression model is applied for the case study of gas turbine abnormal state analysis. In addition to vibration analysis at the remote site, the kernel regression model technique can is useful for analyzing abnormal state of rotor vibration signals of gas turbine in power plant. In monitoring based on data-driven techniques correlated measurements, the fault free training data of shaft vibration obtained during normal operations of gas turbine are used to develop a empirical model based on auto-associative kernel regression. This data-driven model can be used to predict virtual measurements, which are compared with real-time data, generating residuals. Any faults in the system may cause statistically abnormal changes in these residuals and could be detected. As the result, the kernel regression model provides information that can distinguish anomalies such as sensor failure in a shaft vibration signal.

Development of Abnormal Behavior Monitoring of Structure using HHT (HHT를 이용한 이상거동 시점 추정 기법 개발)

  • Kim, Tae-Heon;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring (SHM) technique is increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and influenced by various external loads. "Abnormal behavior point" is a moment when the structure starts vibrating abnormally and this can be detected by comparing between before and after abnormal behavior point. In other words, anomalous behavior is a sign of damage on structures and estimating the abnormal behavior point can be directly related to the safety of structure. Abnormal behavior causes damage on structures and this leads to enormous economic damage as well as damage for humans. This study proposes an estimating technique to find abnormal behavior point using Hilber-Huang Transform which is a time-frequency signal analysis technique and the proposed algorithm has been examined through laboratory tests with a bridge model using a shaking table.

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

Feature Extraction of ECG Signal for Heart Diseases Diagnoses (심장질환진단을 위한 ECG파형의 특징추출)

  • Kim, Hyun-Dong;Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF