• Title/Summary/Keyword: Abnormal Behavior Monitoring

Search Result 66, Processing Time 0.026 seconds

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

Safety Assessment and Behavior Control System using Monitoring of Segmental PSC Box Girder Bridges during Construction (세그멘탈 PSC박스거더교량의 시공간 계측모니터링을 통한 확률적 구조안정성 평가 및 제어 시스템)

  • Shin, Jae-Chul;Cho, Hyo-Nam;Park, Kyung-Hoon;Bae, Yong-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 2001
  • In spite of the increasing construction of segmental PSC box girder bridges, the techniques associated with real-time monitoring, construction control and safety assessment during construction have been less developed compared with the construction techniques. Thus, the development of an integrated system including real-time measurement and monitoring, control and safety assessment system during construction is necessary fur more safe and precise construction of the bridges. This study presents a prototype integrated monitoring system for preventing abnormal behavior and accidents under construction stages, that consist of behavior control system for precise construction, reliability-based safety assessment system, and structural analysis. Also, a prototype software system is developed on the basis of the proposed model. It is successfully applied to the Sea-Hae Grand Bridge built by FCM. The integrated system model and software system can be utilized for the safe and precise construction of segmental PSC bridges during construction.

  • PDF

A Study on the calibration of health monitoring system installed in rail infrastructures (철도구조물 상시계측시스템의 교정방안에 관한 연구)

  • 이준석;최일윤;이현석;고동춘
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.232-238
    • /
    • 2003
  • A health monitoring system becomes a very useful tool to obtain information on long term behavior of the important railway structures such as very long span and special type bridges. It can be also used to give a warning signal to the maintenance engineer when the structure shows abnormal behavior. However, due to long term use and temperature changes, the health monitoring system needs to be calibrated periodically. In this study, calibration and gauge factor readjustment process made for the health monitoring system installed in the railroad bridges and tunnel are reviewed and a few findings are updated. Future work will be concentrated on the long-term analysis of the measurement data and on the database structures so that the assessment of the structure is possible

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

Development of Statistical/Probabilistic-Based Adaptive Thresholding Algorithm for Monitoring the Safety of the Structure (구조물의 안전성 모니터링을 위한 통계/확률기반 적응형 임계치 설정 알고리즘 개발)

  • Kim, Tae-Heon;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring(SHM) technique is ever-increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and are influenced by various external loads. Generally, the visual inspection and non-destructive test for an accessible point of structures are performed by experts. But nowadays, the system is required which is online measurement and detect risk elements automatically without blind spots on structures. In this study, in order to consider the response of non-linear structures, proposed a signal feature extraction and the adaptive threshold setting algorithm utilized to determine the abnormal behavior by using statistical methods such as control chart, root mean square deviation, generalized extremely distribution. And the performance of that was validated by using the acceleration response of structures during earthquakes measuring system of forced vibration tests and actual operation.

Anomaly Detection using Combination of Motion Features (움직임 특징 조합을 통한 이상 행동 검출)

  • Jeon, Minseong;Cheoi, Kyung Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.348-357
    • /
    • 2018
  • The topic of anomaly detection is one of the emerging research themes in computer vision, computer interaction, video analysis and monitoring. Observers focus attention on behaviors that vary in the magnitude or direction of the motion and behave differently in rules of motion with other objects. In this paper, we use this information and propose a system that detects abnormal behavior by using simple features extracted by optical flow. Our system can be applied in real life. Experimental results show high performance in detecting abnormal behavior in various videos.

CareMyDog: Pet Dog Disease Information System with PFCM Inference for Pre-diagnosis by Caregiver

  • Kim, Kwang Baek;Song, Doo Heon;Park, Hyun Jun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • While the population of pet dogs and pet-related markets are increasing, there is no convenient and reliable tool for pet health monitoring for pet owners/caregivers. In this paper, we propose a mobile platform-based pre-diagnosis system that pet owners can use for pre-diagnosis and obtaining information on coping strategies based on their observations of the pet dog's abnormal behavior. The proposed system constructs symptom-disease association databases for 100 frequently observed diseases under veterinarian guidance. Then, we apply the possibilistic fuzzy C-means algorithm to form the "probable disease" set and the "doubtable disease" set from the database. In the experiment, we found that the proposed system found almost all diseases correctly, with an average of 4.5 input symptoms and outputs 1.5 probable and one doubtable disease on average. The utility of this system is to alert the owner's attention to the pet dog's abnormal behavior and obtain an appropriate coping strategy before consult a veterinarian.

Actinometric Investigation of In-Situ Optical Emission Spectroscopy Data in SiO2 Plasma Etch

  • Kim, Boom-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.139-143
    • /
    • 2012
  • Optical emission spectroscopy (OES) is often used for real-time analysis of the plasma processes. OES has been suggested as a primary plasma process monitoring tool. It has the advantage of non-invasive in-situ monitoring capability but selecting the proper wavelengths for the analysis of OES data generally relies on empirically established methods. In this paper, we propose a practical method for the selection of OES wavelength peaks for the analysis of plasma etch process and this is done by investigating reactants and by-product gas species that reside in the plasma etch chamber. Wavelength selection criteria are based on the standard deviation and correlation coefficients. Moreover, chemical actinometry is employed for the normalization of the selected wavelengths. We also present the importance of chemical actinometry of OES data for quantitative analysis of plasma. Then, the suggested OES peak selection method is employed.. This method is used to find out the reason behind abnormal etching of PR erosion during a series of $SiO_2$ etch processes using the same recipe. From the experimental verification, we convinced that OES is not only capable for real-time detection of abnormal plasma process but it is also useful for the analysis of suspicious plasma behavior.

Efficient Driver Attention Monitoring Using Pre-Trained Deep Convolution Neural Network Models

  • Kim, JongBae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.