• 제목/요약/키워드: Abiotic gene

검색결과 211건 처리시간 0.024초

Members of the ran family of stress-inducible small GTP-binding proteins are differentially regulated in sweetpotato plants

  • Kim, Young-Hwa;Huh, Gyung Hye
    • Journal of Plant Biotechnology
    • /
    • 제40권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Ran is a small GTP-binding protein that binds and subsequently hydrolyzes GTP. The functions of Ran in nuclear transport and mitotic progression are well conserved in plants and animals. In animal cells, stress treatments cause Ran relocalization and slowing of nuclear transport, but the role of Ran proteins in plant cells exposed to stress is still unclear. We have therefore compared Ran genes from three EST libraries construed from different cell types of sweetpotato and the distribution pattern of Ran ESTs differed according to cell type. We further characterized two IbRan genes. IbRan1 is a specific EST to the suspension cells and leaf libraries, and IbRan2 is specific EST to the root library. IbRan1 showed 94.6 % identity with IbRan2 at the amino acid level, but the C-terminal region of IbRan1 differed from that of IbRan2. These two genes showed tissue-specific differential regulation in wounded tissues. Chilling stress induced a similar expression pattern in both IbRan genes in the leaves and petioles, but they were differently regulated in the roots. Hydrogen peroxide treatment highly stimulated IbRan2 mRNA expression in the leaves and petioles, but had no significant effect on IbRan1 gene expression. These results showed that the transcription of these two IbRan genes responds differentially to abiotic stresses and that they are subjected to tissue-specific regulation. Plant Ran-type small G-proteins are a multigenic family, and the characterization of each Ran genes under various environmental stresses will contribute toward our understanding of the distinctive function of each plant Ran isoform.

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Insights into the Gut Microbiota of Freshwater Shrimp and Its Associations with the Surrounding Microbiota and Environmental Factors

  • Zhao, Yanting;Duan, Cuilan;Zhang, Xu-xiang;Chen, Huangen;Ren, Hongqiang;Yin, Ying;Ye, Lin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.946-956
    • /
    • 2018
  • The gut microbiota of aquatic animals plays a crucial role in host health through nutrient acquisition and outcompetition of pathogens. In this study, on the basis of the high-throughput sequencing of 16S rRNA gene amplicons, we examined the bacterial communities in the gut of freshwater shrimp (Macrobrachium nipponense) and in their living environments (sediment and pond water) and analyzed the effects of abiotic and biotic factors on the shrimp gut bacterial communities. High bacterial heterogeneity was observed in the freshwater shrimp gut samples, and the result indicated that both the surrounding bacterial community and water quality factors (particularly dissolved oxygen and temperature) could affect the shrimp gut bacterial community. Despite the observed heterogeneity, 57 genera, constituting 38-99% of the total genera in each of the 40 shrimp gut samples, were identified as the main bacterial population in the gut of M. nipponense. In addition, a high diversity and abundance of lactic acid bacteria (26 genera), which could play significant roles in the digestion process in shrimp, were observed in the shrimp gut samples. Overall, this study provides insights into the gut bacterial communities of freshwater shrimp and basic information for shrimp farming regarding the application of probiotics and disease prevention.

The ACC deaminase from rhizobateria promoted resistance of salininty stress in seedling and growth of plant

  • Soh, Byoung-Yul;Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Lee, Kui-Jae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.17-17
    • /
    • 2010
  • Rhizobacteria are a diverse group of free-living soil bacteria that live in plant rhizosphere and colonized the root system. Plant growth-promoting rhizobacteria (PGPR) possessing ACC deaminase (ACCD) can reduce ACC and ethylene in plant tissue and mediated the growth of plants under various stresses including salt stress. ACCD decrease ethylene levels in plant tissue that produce high levels of ethylene in tissue via elevated levels of ACC under salt stress. We selected strains of Pseudomonas sp. possessing ACCD activity for their ability to promote plant growth under salt stress from soil sample collected at Byeonsan, Jeonbuk, South Korea. The Pseudomonas strains possessing ACCD increased the rate of the seedling and growth of chinese cabbage seeds under salt stress. We cloned ACCD gene from P.fluorescens and expressed recombinant protein in Escherichia coli. The active form of recombinant ACCD converted ACC to a-ketobutyrate. The in vivo treatment of recombinant ACCD itself increase the rate of the seedling and growth of Chinese cabbage seeds under salt stress. The polyclonal P.fluorescens anti-ACCD antibody specifically reacted with ACCD originated from Pseudomonas. This indicates that the antibody might act as an important indicator for ACCD driven from Pseudomonas exhibiting plant growth-promoting activity. This study will be useful for identification of newly isolated PGPR containing ACCD and exploioting the ACCD activity from PGPR against various biotic and abiotic stresses.

  • PDF

Identification of salt and drought inducible glutathione S-transferase genes of hybrid poplar

  • Kwon, Soon-Ho;Kwon, Hye-Kyoung;Kim, Wook;Noh, Eun Woon;Kwon, Mi;Choi, Young Im
    • Journal of Plant Biotechnology
    • /
    • 제41권1호
    • /
    • pp.26-32
    • /
    • 2014
  • Recent genome annotation revealed that Populus trichocarpa contains 81 glutathione S-transferase (GST) genes. GST genes play important and varying roles in plants, including conferring tolerance to various abiotic stresses. Little information is available on the relationship - if any - between drought/salt stresses and GSTs in woody plants. In this study, we screened the PatgGST genes in hybrid poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) that were predicted to confer drought tolerance based on our expression analysis of all members of the poplar GST superfamily following exposure to salt (NaCl) and drought (PEG) stresses, respectively. Exposure to the salt stress resulted in the induction of eight PatgGST genes and down-regulation of one PatgGST gene, and the level of induction/repression was different in leaf and stem tissues. In contrast, 16 PatgGST genes were induced following exposure to the drought (PEG) stress, and two were down-regulated. Taken together, we identified seven PatgGSTs (PatgGSTU15, PatgGSTU18, PatgGSTU22, PatgGSTU27, PatgGSTU46, PatgGSTU51 and PatgGSTU52) as putative drought tolerance genes based on their induction by both salt and drought stresses.

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Correlation of saponarin content with biosynthesis-related gene expression in hulled and hulless barley (Hordeum vulgare L.) cultivars

  • Lee, HanGyeol;Park, Jae-Hyeok;Yoon, A Mi;Kim, Young-Cheon;Park, Chul Soo;Yang, Ji Yeong;Woo, So-Yeun;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • 제48권1호
    • /
    • pp.12-17
    • /
    • 2021
  • Saponarin found in young barley sprouts has a variety of beneficial biological and pharmacological properties, including antioxidant, hypoglycemic, antimicrobial, and hepatoprotective activities. Our previous work demonstrated that saponarin content was correlated with the expression levels of three biosynthetic pathway genes [chalcone synthase (HvCHS1), chalcone isomerase (HvCHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (HvOGT1)] in young barley seedlings under various abiotic stress conditions. In this study, we investigated the saponarin content and expression levels of three saponarin biosynthetic pathway genes in hulled and hulless domestic barley cultivars. In the early developmental stages, some hulled barley cultivars (Kunalbori1 and Heukdahyang) had much higher saponarin contents than did the hulless barley cultivars. An RNA expression analysis showed that in most barley cultivars, decreased saponarin content correlated with reduced expression of HvCHS1 and HvCHI, but not HvOGT1. Heat map analysis revealed both specific increases in HvCHS1 expression in certain hulled and hulless barley cultivars, as well as general changes that occurred during the different developmental stages of each barley cultivar. In summary, our results provide a molecular genetic basis for the metabolic engineering of barley plants to enhance their saponarin content.

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.

Nitric oxide-Releasing Chitosan Nanoparticles; A Potential Impeding Strategy Against Salinity Stress in Arabidopsis thaliana

  • Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Da-Sol Lee;Bong-Gyu Mun;Hak-Yoon Kim;Byung-Wook Yun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.157-157
    • /
    • 2022
  • Plants being sessile are prone to various abiotic challenges, including salinity. Plants generally cope with salt stress by regulating their endogenous NO levels. NO exogenously applied in various forms also successfully impedes the salt stress, but its small size, short half life, and high volatility rate hamper its application in agriculture. NO application via CS as a nanocarrier is an alternate option to ensure the optimal kinetic release of NO for a long period compared to the free NO form. Herein, we synthesized and characterized GSNO-CS NP by ionic gelation of TPP with CS and then reacting with GSH, followed by reaction with NaNO2 suspension. The synthesized NPs were characterized using non-destructive analytical techniques such as DLS, FTIR, and SEM to ensure their synthesis and surface morphology. NO-release profile confirmed optimal kinetic NO release for 24 h from NO-CS NP as compared to free NO form. The efficiency of NO-CS NP was checked on Arabidopsis plants under salinity stress by gauging the morphological, physiological, and enzymatic antioxidant system and SOS pathway gene expression levels. Overall, the results revealed that NO-CS NP successfully mitigates salinity stress compared to free GSNO. Concluding, the findings provide sufficient experimental evidence for the application of nanotechnology to enhance NO delivery, thus inducing more benefits for the plants under stress conditions by mitigating the deleterious impacts of salt stress on the morphological and physiological status of the plants, and regulating the ions exchange by overexpression of SOS pathway candidate genes.

  • PDF