• Title/Summary/Keyword: Abalone (Haliotis discus hannai)

Search Result 194, Processing Time 0.021 seconds

Lipid Composition of Purple Shell and Abalone (피뿔고둥과 전복의 지질조성에 관한 연구)

  • YOON Ho-Dong;BYUN Han-Seok;KIM Seon-Bong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.5
    • /
    • pp.446-452
    • /
    • 1986
  • This paper presents the composition of neutral and polar lipids obtained from puple shell, Rapana venosa and the abalone, Haliotis discus hannai. The fatty acid composition and the classification of neutral lipids from two species were determined by gas chromatography (GLC) and thin layer chromatography (TLC). Total lipid contents of samples were $0.5\%$ in purple shell and $0.4\%$ in the abalone. The predominant fatty acids of total lipids were eicosapentaenoic acid ($19.30\%$). eicosenoic acid ($12.10\%$) and palmitic acid ($11.77\%$) in the purple shell, and palmitic acid ($21.29\%$), oleic acid ($14.55\%$) and linoleic acid ($14.21\%$) in the abalone. The lipid composition of non-polar lipid fractions in purple shell and abalone was separated and identified as free sterol, free fatty acid, triglyceride and hydrocarbon & esterified sterol by TLC. The contents of triglyceride from both neutral lipids were shown more abundant than any other subclasses. The main fatty acids of neutral lipids were eicosapentaenoic acid ($18.6\%$), palmitic acid ($14.90\%$) and eicosenoic acid ($14.76\%$) in the purple shell, and palmitic acid ($28.12\%$), oleic acid($20.5\%$) and myristic acid ($12.5\%$) in the abalone. Eicosapentaenoic acid ($17.57\%$), stearic acid ($13.26\%$) and eicosatetraenoic acid ($11.24\%$) were important fatty acids of glycolipid in the purple shell, and myristic acid ($12.75\%$), stearic acid ($12.10\%$) and eicosatetraenoic acid ($10.64\%$) in the abalone. The major fatty acids of phospholipids were eicosapentaenoic acid ($20.18\%$), palmitic acid ($11.26\%$) and eicosenoic acid ($10.90\%$) in the purple shell, and palmitic acid ($21.10\%$), eicosapentaenoic acid ($12.90\%$) and oleic acid($11.13\%$) in the abalone.

  • PDF

STUDIES ON THE PROPAGATION OF ABALONE (전복의 증식에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • The spawning of the abalone, Haliotis discus hannai, was induced In October 1969 by air ex-position for about 30 minutes. At temperatures of from 14.0 to $18.8^{\circ}C$, the youngest trochophore stage was reached within 22 hours after the egg was laid. The trochophore was transformed into the veliger stage within 34 hours after fertilization. For $7\~9$ days after oviposition the veliger floated in sea water and then settled to the bottom. The peristomal shell was secreted along the outer lip of the aperture of the larval shell, and the first respiratory pore appears at about 110 days after fertilization. The shell attained a length of 0.40 mm in 15 days, 1.39 mm in 49 days, 2.14 mm in 110 days, 5.20 mm in 170 days and 10.00 mm in 228 days respectively. Monthly growth rate of the shell length is expressed by the following equation :$L=0.9981\;e^{0.18659M}$ where L is shell length and M is time in month. The density of floating larvae in the culture tank was about 10 larvae per 100 co. The number of larvae attached to a polyethylene collector ($30\times20\;cm$) ranged from 10 to 600. Mortality of the settled larvae on the polyethylene collector was about $87.0\%$ during 170 days following settlement. The culture of Nauicula sp. was made with rough polyethylene collectors hung at three different depths, namely 5 cm, 45 cm and 85 cm. At each depth the highest cell concentration appeared after $15\~17$ days, and the numbers of cells are shown as follows: $$5\;cm\;34.3\times10^4\;Cells/cm^2$$ $$45\;cm\;27.2\times10^4\;Cells/cm^2$$ $$85\;cm\;26.3\times10^4\;Cells/cm^2$$ At temperatures of from 13.0 to $14.3^{\circ}C$, the distance travelled by the larvae (3.0 mm In shell length) averaged 11.36 mm for a Period of 30 days. Their locomation was relatively active between 6 p.m. and 9 p.m., and $52.2\%$ of them moved during this period. When the larvae (2.0 mm in shell length) were kept in water at $0\;to\;\~1.8^{\circ}C$, they moved 1.15cm between 4 p.m. and 8 p.m. and 0.10 cm between midnight and 8 a.m. The relationships between shell length and body weight of the abalone sampled from three different localities are shown as follows: Dolsan-do $W=0.2479\;L^{2.5721}$ Huksan-do $W=0.1001\;L^{3.1021}$ Pohang $W=0.9632\;L^{2.0611}$

  • PDF

Comparative Study on Endogeneous Activities of ${\beta}-Galactosidase$-like Enzyme in Several Finfishes and Shellfishes (어패류 및 종에 내재되어 있는 ${\beta}-Galactosidase$의 활성 비교)

  • Kim, Dae-Hee;Jeong, Chang-Hwa;Nam, Yoon-Kwon;Min, Kwang-Sik;Kim, Dong-Soo
    • Journal of Aquaculture
    • /
    • v.9 no.4
    • /
    • pp.445-452
    • /
    • 1996
  • Endogeneous activities of ${\beta}-galactosidase$-like enzyme in various tissues from several finfishes and shellfishes were examined by histochemical analysis based on X-gal staining and by fluorimetric measurement using 4-methylumbelliferyl-${\beta}$-D-galactoside (4-MUG). Species used in this study were 3 freshwater fishes, mud loach (Misgurnus mizolepis), common carp (Cyprinus carpio) and tilapia (Oreochromis niloticus) ; 3 marine fishes, olive flounder (Paralichthys olivaceus), stone flounder (Kareius bicoloratus) and marbled sole (Limanda yokohamae) ; and 4 shellfishes, abalone (Haliotis discus hannai), Pacific oyster (Crassoskra gigas), pearl oyster (Pinctada fucata martensii) and ark shell (Anadara broughtonii). The activities of ${\beta}-galactosidase$-like enzyme in all finfishes examined were significantly different among species, with the wide variations between tissues in a species. In general, the tissues such as kidney, intestine and liver were ones which showed the significantly higher values in 4-MUG fluorimetry and deeper staining patterns in X-gal analysis compared to other tissues. On the other hand, serum and muscle revealed the significantly lower activities than others did, regardless of species. Shellfishes were also found to have endogenous activities of ${\beta}-galactosidase$-like enzyme which were significantly varied depending on both species and organs in a species. Hepatopancreas from all shellfishes examined showed the deepest pattern in X-gal staining and also the highest value in 4-MUG analysis, while activities of ${\beta}-galactosidase$-like enzyme in adductor muscles and mantle muscles from all shellfish species in this study except Pacific oyster were negligible : Pacific oyster had the significant activity of this enzyme in muscle tissues. Putative endogenous lacZ fragment was amplified from both finfishes and shellfishes by polymerase chain reaction (PCR). The molecular size of PCR products was about 510 bp, and there was no difference in size among species examined.

  • PDF

Isolation and Characteristics of Alginate-Degrading Methylobacterium sp. HJM27 (알긴산 분해 Methylobacterium sp. HJM27 균주의 분리 및 특성)

  • Kim, Ok-Ju;Lee, Dong-Geun;Lee, Sung-Mok;Lee, Suck-June;Do, Hyung-Joo;Park, Hye-Jin;Kim, Andre;Lee, Jae-Hwa;Ha, Jong-Myung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • This study was aimed to screen bacteria of high alginate-degrading activity, to select the nitrogen source and concentration of NaCl and sodium alginate for the production of alginate-degrading enzyme, and to determine reaction conditions of enzyme. A novel alginate-degrading bacterium was isolated from abalone (Haliotis discus hannai) and named Methylobacterium sp. HJM27 by 16S rDNA sequence analysis. The optimum culture conditions for the production of alginate-degrading enzyme were 1.0% sodium alginate, 0.5% peptone, 0.3% yeast extract, 1.5% NaCl, $25^{\circ}C$ and 48 hours incubation time. The raw enzyme showed the highest activity at $25^{\circ}C$ and pH 9, and produced 1.217 g - reducing sugar per liter in 0.8% (w/v) sodium alginate for 30 minutes. Methylobacterium sp. HJM27 and its alginate-degrading enzyme would be useful for the production of bioenergy and biofunctional oligosaccharides from seaweed.