• 제목/요약/키워드: Ab Initio

검색결과 422건 처리시간 0.023초

A Theoretical Study of Some Bicyclic Azoalkanes

  • Chung, Gyu-Sung;Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권12호
    • /
    • pp.2051-2054
    • /
    • 2006
  • The molecular structures of the ground and lowest triplet states of 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH), 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) and their fused ring derivatives are investigated with an ab initio method and the density functional theory. Unlike the singlet DBH and DBO, the azo skeletal structures of the triplet counterparts are turned out to be quite sensitive to the change of the electronic structure of the fused ring. The B3LYP C-N=N-C dihedral angles of the triplet DBH and DBO are estimated to be about 28.0 and $40.4{^{\circ}}$, respectively. The B3LYP singlet-triplet energy gaps for DBH and DBO are predicted to be 58.4 and 48.4 kcal/mol, respectively. The triplet state energy can be lowered drastically by the presence of the remote $\Pi-\Pi$ interaction as in the case of 1bb'.

Theoretical Study of Scanning Probe Microscope Images of VTe2

  • Park, Sung-Soo;Lee, Jee-Young;Lee, Wang-Ro;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.81-84
    • /
    • 2007
  • Ab initio periodic Hartree-Fock calculations with the full potential and minimum basis set are applied to interpretation of scanning tunneling microscope (STM) and atomic force microscope (AFM) images on 1TVTe2. Our results show that the simulated STM image shows asymmetry while the simulated AFM image shows the circular electron densities at the bright spots without asymmetry of electron density to agree with the experimental AFM image. The bright spots of both the STM and AFM images of VTe2 are associated with the surface Te atoms, while the patterns of bright spots of STM and AFM images are different.

Hydrogen-Atom Abstraction Reaction of CF3CH2OCF3 by Hydroxyl Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Rao, Pradeep Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3718-3722
    • /
    • 2010
  • Theoretical investigations are carried out on the title reaction by means of ab-initio and DFT methods. The optimized geometries, frequencies and minimum energy path are obtained at UB3LYP/6-311G(d,p) level. Single point energy calculations are performed at MP2 and MP4 levels of theory. Energetics are further refined by calculating the energy of the species with a modified Gaussian-2 method, G2M(CC,MP2). The rate constant of the reaction is calculated using Canonical Transition State Theory (CTST) utilizing the ab-initio data obtained during the present study and is found to be $5.47{\times}10^{-12}\;cm^3\;molecule^{-1}s^{-1}$ at 298 K and 1 atm.

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

The Rearrangement Reaction of CH3SNO2 to CH3SONO Studied by a Density Functional Theory Method

  • Choi, Yoon-Jeong;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1657-1660
    • /
    • 2004
  • Several critical geometries associated with the rearrangement of $CH_3SNO_2\;to\;CH_3SONO$ are calculated with the density functional theory (DFT) method and compared with those of the ab initio molecular orbital methods. There are two probable pathways for this rearrangement, one involving the transition state of an oxygen migration and the other through the homolytic decomposition to radicals. The reaction barrier via the transition state is about 60 kcal/mol and the decomposition energy into radicals about 35 kcal/mol, suggesting that the reaction pathway via the homolytic cleavage to radical species is energetically favorable. Since even the homolytic cleavage requires large energies, the rearrangement reaction is unlikely without the aid of catalysts.

소염제로서의 살리씰산유도체의 구조-활성 상관관계에 관한 양자화학적 해석 (Quantum Chemical Analysis of Structure-Activity Relationships in Salicylic Acids as Anti-inflammatory Drugs)

  • 이종달;구본기
    • 약학회지
    • /
    • 제33권2호
    • /
    • pp.87-100
    • /
    • 1989
  • Salicylic acids as anti-inflammatory agents were analyzed by ab initio, quantum chemical methods to study the possible modes of binding to the receptor. As the result of multiple regression analysis of reactivity indices and interpretation of normalized frontier orbital charges of drugs, potency seems to be related to energy of HOMO and LUMO at the 5 position of benzene ring, and in the 5-phenyl substituted case, the para position of substituting ring is important. The binding occurs first at the positive site of its receptor. The charge density exhibited by the frontier orbitals suggests that charge moves from receptor site to carboxyl group. The electrostatic orientation effect makes an important contribution to the binding of the active molecules to their receptors. Also the electrostatic potential model may be able to rationalize the source of activity or inactivity of the drugs under investigation.

  • PDF

Mechanism of workfunction modification on HAT-CN/Cu(111) interface: ab initio study

  • Kim, Ji-Hoon;Park, Yong-Sup;Kwon, Young-Kyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.357-357
    • /
    • 2010
  • Using ab initio density functional theory, we study the structural and electronic properties of interface between Cu surface and highly electron withdrawing hexaazatriphenylene-hexanitrile (HAT-CN) known as an efficient hole injection layer for organic light emitting diodes (OLEDs). We calculate the equilibrium geometries of the interface with different HAT-CN coverages. Usually, some of C-N bonds located at the edge of the HAT-CN molecule are deformed toward Cu atoms resulting in the reconstruction of Cu surface. By analyzing the electron charge and the potential distributions over the interface, we observe the formation of surface dipoles, which modify the work function at the interface. Such dipole formation is attributed to two origins, one of which is a geometrical nature and the other is a bond dipole. The former is related to structural deformation mentioned above, whereas the latter is due to charge transfer between organic and metal surface.

  • PDF

Dipole Moments of the OH, OH$^+$, and OH$^-$Valence States by ab initio Effective Valence Shell Hamiltonian Method

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권2호
    • /
    • pp.101-105
    • /
    • 1988
  • The ab initio effective valence shell Hamiltonian method, based on quasidegenerate many-body perturbation theory, is generalized to calculate molecular properties as well as the valence state energies which have previously been determined for atoms and small molecules. The procedure requires the evaluation of effective operator for each molecular property. Effective operators are perturbatively expanded in powers of correlation and contain contributions from excitations outside of the multireference valence space. To demonstrate the validity of this method, calculations for dipole moments of several low lying valence states of OH, $OH^+$, and $OH^-$ to first order in the correlations have been performed and compared with configuration interaction calculations.

Ab initio Calculations of Protonated Ethylenediamine-(water)3 Complex: Roles of Intramolecular Hydrogen Bonding and Hydrogen Bond Cooperativity

  • 부두완
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.693-698
    • /
    • 2001
  • Ab initio density functional calculations on the structural isomers, the hydration energies, and the hydrogen bond many-body interactions for gauche-, trans-protonated ethylenediamine-(water)3 complexes (g-enH+(H2O)3, t-enH+(H2O)3) have been performed. The structures and relative stabilities of three representative isomers (cyclic, tripod, open) between g-enH+(H2O)3 and t-enH+(H2O)3 are predicted to be quite different due to the strong interference between intramolecular hydrogen bonding and water hydrogen bond networks in g-enH+(H2O)3. Many-body analyses revealed that the combined repulsive relaxation energy and repulsive nonadditive interactions for the mono-cyclic tripod isomer, not the hydrogen bond cooperativity, are mainly responsible for the greater stability of the bi-cyclic isomer.

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • 이본수;김찬경;최정욱;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.849-853
    • /
    • 1996
  • Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.