• Title/Summary/Keyword: AZ31 Magnesium alloy

Search Result 246, Processing Time 0.027 seconds

Study on the Mechanical Properties of Laser Welded AZ31 Magnesium Alloy (AZ31 마그네슘 합금 레이저 용접부의 기계적 성질에 관한 연구)

  • Lee, M.Y.;Jeong, B.H.;Jeong, S.M.;Park, H.J.
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • This study aimed to investigate the change of mechanical properties with the rolling direction and shielding condition during laser welding of AZ31 magnesium alloy. AZ31 magnesium alloy sheets of 1mm thickness were welded using a continuous wave Nd:YAG laser with and without Ar shielding gas. The effect of Ar shielding gas and rolling direction on the mechanical properties were investigated using Vickers hardness, transverse-weld tensile. Porosity in the weld metals was investigated using an optical microscope. The experimental results showed that mechanical properties of AZ31 magnesium alloy laser welds were upgraded compared to those of base metal. Mechanical properties of AZ31 magnesium alloy laser welds were not substantially changed when Ar shielding gas was supplied.

  • PDF

Corrosion Behavior of AZ31 Magnesium Alloy during Machining (AZ31 마그네슘 합금의 절삭가공과정에서의 부식거동)

  • Kim, Jae-Hak;Kwon, Sung-Eun;Lee, Seung-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.315-321
    • /
    • 2012
  • In the study, corrosion characteristics of AZ31 magnesium alloy under various environments exposed during machining(immersion in cutting oil, 5 % cutting oil aqueous solution and distilled water & contact with dissimilar metals, SPC4 and A5052-H32) were investigated. A corrosion test was performed AZ31 magnesium alloy was immersed in each electrolyte solution after contacting with each dissimilar metals, and the results were observed by an electron microscope. In immersion tests, corrosion of AZ31 magnesium alloy showed to be in the sequence of distilled water> 5 % cutting oil aqueous solution> cutting oil> air, and in the test of contact with dissimilar metals, corrosion showed to be in the sequence of SPC4> A5052-H32> AZ31. It can be concluded that to prevent corrosion during machining, AZ31 magnesium alloy must prevent contacting water and use magnesium alloy for raw material of Jig & Fixture.

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Characteristics of Butt Welded AZ31 Magnesium Alloy with Laser Welding Conditions (레이저 용접조건에 따른 AZ31 마그네슘합금 맞대기 용접부의 특성)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.517-523
    • /
    • 2009
  • Magnesium alloys have many advantages such as a low density, high strength/weight ratio and well recycle. And joining process is absolutely necessary to expand the field of application of magnesium alloy. The main problems of conventional process such as arc welding for magnesium alloy are the inflammability, a tendency toward crack formation and the appearance of porosity during solidification. Laser welding technology is a promising means for overcoming these difficulties. This study is related to the laser weldability of AZ31 magnesium alloy, an all-purpose wrought alloy with good strength and ductility. The effect of welding conditions on the weldability of butt joints was examined. Also, the mechanical properties of butt welded joints were investigated by tensile test and hardness test.

Development of Automotive Dash Panel Parts Using Warm Drawing of Magnesium Alloy AZ31B (마그네슘 합금 AZ31B 판재를 활용한 활용한 차체 Dash Panel 온간 성형 부품 개발)

  • Park, D.H.;Yun, J.J.;Tak, Y.H.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.248-255
    • /
    • 2015
  • The warm drawing of magnesium alloy AZ31B sheet is affected by temperature because tensile elongation is changed due to the elevated temperature. In the current study, the effect of temperature was investigated for an automotive dash panel part by both experimental and FE analysis. Tensile tests were performed to obtain mechanical properties for various temperatures. AZ31B alloy sheet shows increased total elongation with increasing deformation temperature in the range of 200 to 300℃. The heating channel inserted into the die was used to regulate and to obtain an optimal temperature. A temperature controller was constructed to reduce temperature variation. Warm drawing of magnesium alloy AZ31B was performed to produce the desired shape of the lightweight automotive dash panel. The simulated results showed good agreement with the experimental results.

Characteristics of the laser brazing on AZ31 magnesium alloy and Zn coated steel dissimilar joint (AZ31 마그네슘합금과 아연도금강판 이종소재의 레이저 브레이징 특성)

  • Lee, Mok-Young;Kim, Sook-Whan;NASIRI, ALI M.;ZHOU, NORMAN Y.
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The dissimilar welding between magnesium alloy and steel sheet was required in automobile industry to increase the strength of the dissimilar joints. Laser brazing is one of the good joining processes for Mg- steel dissimilar joint. In this study, AZ31 magnesium alloy and Zn coated steel dissimilar joint was brazed using diode direct laser with Mg600 filler wire and Superior #21 flux. The wetting of Mg filler wire on Zn coating was very good because of the formation of eutectic phase with low melting temperature. The strength of the brazed joint between AZ31 magnesium alloy and Zn coated steel was 131.3N/mm. The fracture occurred at brazement.

  • PDF

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (I) - Comparison on Laser Weldability of AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (I) - AZ31B-H24 및 AZ31B-O의 레이저 용접성 비교 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. In general, AZ31B is classified into AZ31B-H24 and AZ31B-O depending on temper designation. Thus, in this study, the laser weldability of AZ31B-H24 and AZ31B-O was investigated and compared. CW Nd:YAG laser was used to produce bead and butt joints. And the effects of welding conditions on the weldability of these joints were examined in detail. As a result of this study, AZ31B-H24 was found to have thinner oxide film and smaller grain size compared with AZ31B-O. Due to such difference, in bead welding, AZ31B-H24 had more wide welding range for full penetration compared with AZ31B-O. Furthermore, it was also confirmed that AZ31B-H24 and AZ31B-O have different welding conditions to obtain stable keyhole in butt welding.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Electrochemical properties of AZ31, AZ61 magnesium alloy electrodes for eco-friendly Magnesium-air battery (친환경 마그네슘-공기 전지용 AZ31, AZ61 마그네슘 합금 전극의 전기화학적 특성)

  • Choi, Weon-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.17-22
    • /
    • 2021
  • Eco-friendly magnesium-air battery is a kind of metal-air battery known as a primary battery with a very high theoretical discharge capacity. This battery is also called a metal-fuel cell from the viewpoint of using oxygen in the atmosphere as a cathode active material and magnesium alloy as a fuel. Since battery performance is determined by the properties of the magnesium alloy used as a anode, more research and development of the magnesium alloy electrode as a anode material are required in order to commercialize it as a high-performance battery. In this study, the commercialized magnesium alloys(AZ31, AZ61) were selected and then electrochemical measurements and discharge test were conducted. Electrochemical properties of magnesium alloys were investigated by OCP changes, Tafel parameters and CV measurement, and the feasibilities of AZ61 alloy with excellent discharge capacity(1410mAhg-1) as electrode materials were evaluated through CC discharge experiments.

A study on the creep characteristic of AZ31 Mg alloy at below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘 합금 크리이프 특성에 관한 연구)

  • An, Jung-Oh;Kang, Dae-Min
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined over the temperature range below 0.5Tm and stress range of 109~187MPa, respectively, in order to investigate the creep behavior. AZ31 Magnesium alloy identify the activation energy for creep deformation and the stress dependence to creep rate at below 0.5Tm, and then investigate the mechanism for creep deformation and creep rupture life of AZ31 Magnesium alloy.

  • PDF