• Title/Summary/Keyword: AZ31 Magnesium Alloy Sheet

Search Result 98, Processing Time 0.031 seconds

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy (AZ3l 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.149-153
    • /
    • 2008
  • Since magnesium alloy sheets have been employed in industrial field which requires the light weight and thin engineering components, most of researches have been focused on the formability of magnesium ahoy sheet. In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. Sheet metals were mostly formed in simple shapes such as circular or rectangular. Few studies about forming of complex shapes were reported. Thus, the formability of magnesium alloy sheet for complex shapes is investigated. The process variable for a double sink shape deep drawing with circular and rectangular shape was investigated by varying temperature, velocities, and clearances. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

  • PDF

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Choi, C.S.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.289-293
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

  • PDF

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Kim, H.Y.;Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.364-369
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

Development of Automotive Dash Panel Parts Using Warm Drawing of Magnesium Alloy AZ31B (마그네슘 합금 AZ31B 판재를 활용한 활용한 차체 Dash Panel 온간 성형 부품 개발)

  • Park, D.H.;Yun, J.J.;Tak, Y.H.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.248-255
    • /
    • 2015
  • The warm drawing of magnesium alloy AZ31B sheet is affected by temperature because tensile elongation is changed due to the elevated temperature. In the current study, the effect of temperature was investigated for an automotive dash panel part by both experimental and FE analysis. Tensile tests were performed to obtain mechanical properties for various temperatures. AZ31B alloy sheet shows increased total elongation with increasing deformation temperature in the range of 200 to 300℃. The heating channel inserted into the die was used to regulate and to obtain an optimal temperature. A temperature controller was constructed to reduce temperature variation. Warm drawing of magnesium alloy AZ31B was performed to produce the desired shape of the lightweight automotive dash panel. The simulated results showed good agreement with the experimental results.

Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy (AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

Finite-Element Analysis of Warm Square Cup Deep Drawing Process of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 사각컵 디프드로잉 공정의 유한요소 해석)

  • Kim H.K.;Lee W.R.;Hong S.K.;Kim J.D.;Han B.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.232-240
    • /
    • 2006
  • Magnesium alloys are expected to be widely used fur the parts of structural and electronic appliances due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

Multi-Stage forming Process Applied to Warm Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 드로잉에서의 다단 성형 공정 적용)

  • Kim, H.K.;Kim, G.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.242-245
    • /
    • 2007
  • In the present investigation, the multi-stage warm drawing process was applied to the magnesium alloy AZ31 sheet to examine the feasibility of multi-stage forming process as a high formability product making process. For that purpose, a multi-stage drawing die system with heating module was developed, and the AZ31 sheets of different sizes were consecutively drawn by the multi-stage drawing die. The obtained drawn cups of AZ31 showed that the multi-stage drawing provided the better formability than the single stage drawing in terms of drawing depth without cup defects such as wrinkles or fractures. The sheet formability improvement by using the multi-stage drawing die system against the single stage was also analyzed in terms of the finite element analysis of material state variables evolution.

  • PDF

Cavitation Behavior of AZ31 Sheet during Gas Blow Forming (AZ31 합금의 부풀림 성형시 공공의 거동)

  • Kim, S.H.;Kang, N.H.;Kwon, Y.N.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.601-610
    • /
    • 2011
  • Based on the facts that AZ31 magnesium alloy can be blow formed just like superplastic aluminum alloys and that most superplastic alloys fail by cavitation, the present study was undertaken to investigate the cavitation behavior of a fine-grained AZ31 sheet during blow forming at the elevated temperature. Other points of interest included the much lower strain rate and temperature dependencies of the magnesium alloy compared with conventional superplastic alloys. It was also aimed to find if cavitation in the AZ31 alloy can be suppressed by hydrostatic pressure, as is the case in most superplastic alloys. Interestingly, the application of hydrostatic pressure did not increase the blow formability of AZ31 sheet, even though it reduced the degree of cavitation. A possible reason for this behavior is discussed.

Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kim Y. S.;Kuwabara Toshihiko;You B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF