• Title/Summary/Keyword: AZ31 마그네슘합금

Search Result 195, Processing Time 0.023 seconds

Effect of sealing treatment on the corrosion resistance of PEO-treated AZ31 Mg alloy. (플라즈마 전해산화 처리된 AZ31 마그네슘 합금의 내식성에 봉공처리가 미치는 영향.)

  • Gwon, Du-Yeong;Mun, Seong-Mo;Kim, Yong-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.186-186
    • /
    • 2015
  • 본 연구에서는 플라즈마 전해산화 처리된 AZ31 마그네슘 합금의 내식성에 봉공처리가 미치는 영향에 대해 알아보았다. 플라즈마 전해산화 공정에 의해 형성된 피막에 대하여 증류수 및 알칼리 수용액에서 봉공처리를 실시하였으며, 개회로 전위 측정, 동 전위 분극실험 및 염수분무실험을 통해 내식성을 평가하였다. 실험 결과 증류수 및 알칼리 수용액에서 모두 봉공처리를 함에 따라 내식성이 향상되었으며, 봉공처리 시간을 증가시킴으로써 AZ31 마그네슘 합금의 내식성을 크게 향상 시킬 수 있었다.

  • PDF

Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘합금 판재의 고온 스프링백 특성)

  • Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.60-63
    • /
    • 2007
  • The effect of process parameters on springback of AZ31B magnesium alloy sheet was investigated by performing 2D draw bending test at the elevated temperatures. And also the springback characteristics were studied different blank holding forces between 30 to 250 kgf. Springback was considerably reduced at higher temperatures than $200^{\circ}C$. The blank holding force in the range used, however, had little influence on springback in isothermal tests. For a given temperature, springback decreased with increasing blank holding force in non-isothermal tests.

  • PDF

Anti-corrosive surface treatment of Mg alloy steel using organic self assembly monolayer technique (유기 단분자막을 이용한 마그네슘 합금 판재 (AZ31)의 내식성 표면처리 기술 연구)

  • Park, Jong-Won;Lee, Gyeong-Hwang;Park, Yeong-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.113-114
    • /
    • 2009
  • 기존의 습식 및 건식 표면처리 공정의 단점을 극복하고, 마그네슘 합금의 가장 큰 문제점인 내식성개선을 위해 열화학기상증착(thermal Chemical Vapor Deposition)법을 이용하여 자기조직화 유기 단분자막(Self-Assembled organic Monolayer, SAM)을 제작하여 마그네슘 합금(AZ31)의 내식성을 검토하였다.

  • PDF

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Choi, C.S.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.289-293
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

  • PDF

Plasma Electrolytic Oxidation Coatings on AZ31 Mg Alloy (AZ31 마그네슘 합금의 플라즈마전해산화 코팅)

  • Mun, Seong-Mo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.190-190
    • /
    • 2015
  • 본 연구에서는 AZ31 마그네슘 합금의 내식성을 향상시키기 위하여 플라즈마 전해산화(PEO, plasma electrolytic oxidation)법을 이용하여 다양한 용액에서 양극 및 음극 펄스전류를 인가하여 형성하였다. PEO피막 내부에 형성된 기공의 모양 및 크기를 에폭시 레플리카법을 이용하여 관찰하였다. PEO 피막 내부의 기공의 크기는 용액의 pH가 증가할수록 작아졌으며 균열의 크기는 증가하였다.

  • PDF

Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy (AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향)

  • Kim, K.S.;Kim, M.K.;Kim, H.K.;Kim, C.O.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.

FE Analysis on the Press Forging of AZ31 Magnesium Alloy (AZ31마그네슘합금의 프레스포징시 FE해석)

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.86-91
    • /
    • 2006
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good castability in spite of hexgonal closed-packed crystal structure of pure magnesium. In this paper, FE analysis was executed about the formability of AZ3l magnesium alloy on press forging process. For this, the variation of sheet temperature, distribution of punch force and the effect of heat transfer and friction between punch and sheet on the forming characteristics during press forging of AZ31 has been analyzed by finite element analysis. In order to obtain temperature dependence of material characteristics, uniaxial tension tests at elevated temperature were done under temperature of $100^{\circ}C\~ 500^{\circ}C$.

The study on the recycle for machined chips and scraps of AZ91 magnesium alloy (AZ91 마그네슘합금 절분 및 스크랩의 재활용에 관한 연구)

  • 이두면;이준서;이치환
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • This paper was focused to optimize hot extrusion condition of Mg machined chips and scraps as fundamental basic research for the recycle of Mg alloy. We have been performed to extrude at $300~380^{\circ}C$ temperature range under the extrusion ratio of 25:1 after cold-pressing AZ91 Mg machined chips and scraps. AZ91 Mg ingots was used as reference materials. Microstructure observation showed that the extruded machined chips were perfectly bonded and extruded materials became fine grain size($20\mu\textrm{m}$) by recrystallization during hot extrusion. The specimens extruded from the machined chips, scraps and Mg ingot indicated tensile strength of 330MPa and the elongation of 10% at room temperature.

  • PDF

Variation of Material Characteristics of a Hot-formed AZ31 Magnesium Alloy (마그네슘 합금 AZ31의 온간성형과 재료특성변화에 관한 연구)

  • Suh, Chang-Min;Hor, Kwang-Ho;Kim, Hyo-Min;Suh, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.913-919
    • /
    • 2013
  • Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperature on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of $230^{\circ}C$ shows occasional defects, but the best forming quality was obtained at $270^{\circ}C$. The optimal temperature for the forming process was found to be $250^{\circ}C$ considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at $250^{\circ}C$ was approximately 100 MPa after $10^6$ cycles.