• Title/Summary/Keyword: AVR System

Search Result 164, Processing Time 0.022 seconds

Remote practice of AVR system (AVR 시스템의 원격 실습방법)

  • Kim, Byun-Gon;Baek, Jong-Deuk;Kim, Myung-Soo;Jeong, Kyeong-Taek;kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.751-753
    • /
    • 2017
  • In this paper, we implement remote training kit using camera, Arduino and AVR practice kit so that AVR practice kit can be practiced remotely. Implemented systems can be practiced by a large number of users one at a time from a remote location. The practitioner creates the AVR Studio program using the PC remote control method and downloads it to the AVR training kit. When a computer program is created and a mouse is clicked or dragged, the input signal is transmitted to the Arduino and the Arduino transmits the actual button input signal or the analog voltage to the AVR kit. When the AVR kit is activated by receiving the input signal, you can check the operation through the camera. Therefore, using the implemented system, a plurality of users can perform AVR training using one kit.

  • PDF

Design and Performance Analysis of PID type Controllers for Automatic Voltage Regulator(AVR) System Based on i-PID, GPI and OCD Methods (AVR(Automatic Voltage Regulator)시스템을 위한 PID형 제어기의 설계 -i-PID, GPI 및 OCD 알고리즘을 중심으로 -)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1383-1391
    • /
    • 2016
  • This paper is concerned with applicability of a new type of controllers, called i-PID and GPI in which unknown parts of the plant are taken into account without any modeling procedure, to automatic voltage regulator (AVR) system. First, the procedure for applying i-PID and GPI algorithms to AVR system is proposed, which uses model reduction technique based on the given information of AVR. Second, simulations are given to verify their effectiveness comparing to various PID algorithms including PIDD2 which is four-term controller, that is, consisting of PID and second order derivative terms. Superior response performances of i-PID and GPI in comparison to conventional PID controllers are shown. Moreover, i-PID can highly improve the system robustness with respect to model uncertainties, especially to load variations.

AVR Parameter tuning with On-line System model using Parameter optimization technique (On-line 시스템 모델과 파라메터 최적화 기법을 이용한 AVR의 최적 파라메터 튜닝)

  • Kim, Jung-Mun;Moon, Seung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1242-1244
    • /
    • 1999
  • AVR parameter tuning for voltage control of power system generators has generally been done with the open-circuit model of the synchronous generator. When the generator is connected on-line and operating at rated load conditions, the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning using optimization technique with on-line linearized system model. As this method considers not only the on-line models but also the off-line open-circuit models, AVR parameters tuned by this method can give the sufficiently stable performance at the open-circuit commissioning phase and give the desired performance at the operating conditions. Also this method estimates the optimum parameters for desired performance indices that are chosen for satisfying requirements in some practical applications, the performance of the AVR can satisfy the various requirements.

  • PDF

A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method (온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

A study on the development of digital AVR for ship and offshore (선박 및 해양플랜트용 디지털 자동전압조정기 개발에 대한 연구)

  • Lee, Jun-Soo;Yun, Kyung-Guk;Kim, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • Automated voltage regulators (AVRs) are used on ships and offshore to automatically adjust the voltage based on real-time output voltage readings of the generator engine. Analog-type AVR was previously more commonly used, but is slowly being replaced with digital-type AVR because of increased demands of response time. This study presents a new digital AVR system that contains appropriate features of the AVR with respect to offshore unstable load conditions and poor operating conditions. Furthermore, experiments of load and voltage change prove the excellence of stability and response of the proposed system compared to previous AVR systems. Additionally, an integrated control system for a monitoring the output voltage and field current was developed to easily set the gain value.

Voltage Control of Synchronous Generator for Ships using a PMG Type Digital Automatic Voltage Regulator (PMG Type 디지털 AVR을 이용한 선박용 동기발전기 출력전압제어)

  • Yu, Dong-Hwan;Park, Sang-Hoon;Won, Chung-Yuen;Yu, Jae-Sung;Lee, Sang-Seuk;Ahn, Sung-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • To get the constant output, synchronous generator field excitation is controlled by AVR(Automatic Voltage Regulator). Most of ships generator AVR uses the thyristor phase controlled rectifier. However this rectifier is difficult to realize that the fast control system because its control period is slower than MOSFET and IGBT type converter. Therefore, this paper deals with PMG(Permanent Magnet Generator) type digital AVR using MOSFET switch for ships synchronous generator. The composition of this digital AVR is very simple, the generator is under the short circuit accident, the output voltage becomes zero state and AVR can not operate. Thus generator is required to add CBC(Current Boosting Circuit) in an excitation circuit to flow output current. The performance of the proposed system is evaluated on a 10[kVA] experimental prototype circuit in place of real ships generator.

The Analysis on AVR-MVR Conversion Trouble for Excitation System (여자시스템 자동-수동 전환 문제점에 대한 분석)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Byun, Ill-Hwan;Lee, Hyoung-Mook;Choi, Hong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.941-942
    • /
    • 2006
  • The Analysis on AVR-MVR conversion trouble for Excitation System AVR-MVR conversion is a very important function to transfer AVR to MVR when the grid has abrupt changes or the control system has some problems. Therefore through studying on AVR-MVR transfer scheme, and problems which might happen when transferring, we would like to enhance the stability of generator and control system.

  • PDF

PSS-AVR Design using Feedback Linearization (Feedback Linearization을 이용한 PSS-AVR 설계)

  • 염동희;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.202-202
    • /
    • 2000
  • In this paper, the synchronous generator model which is derived from the swing equation and the Park's equation is transformed to an adequate form for feedback linearization. And the single controller is designed in order to play the role of both PSS and AVR. The result of the simulations shows that the stability of the system is guaranteed in the wide range of operating points.

A Study of PSs Modeling of Ulchin N/P #1 by AVR Step Test (AVR 스템시험에 의한 울진 N/P 1호기 PSS 모델링 연구)

  • 김동준;문영환;전동훈;김태균
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.351-358
    • /
    • 2001
  • This paper deals with the PSS modeling of Ulchin N/P #1 as well as the generator and excitation system modeling by utilizing the recorded data from AVR step test, which has been performed by entering small voltage signal into the AVR summing point. In addition to it. two recorded results obtained from the AVR step test with PSS sunning and without PSS running have not only been compared each other on the time domain, but also they heve been analyzed with FFT analysis on the frequency domain; thus, the desirable effects of running PSS in Ulchin N/P #1 on power system have been explicitly confirmed. Finally, the derived PSS model parameters lead to good matches between simulation results and recorded data.

  • PDF