• Title/Summary/Keyword: AVD(Anti Vortex Device)

Search Result 5, Processing Time 0.018 seconds

Numerical Flow Analysis for Anti-Vortex Device (AVD) in Oxidizer Tank (산화제 탱크의 와류방지장치 유동해석)

  • Jang, Je-Sun;Han, Sang-Yeop;Kil, Gyoung-Sub;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.168-175
    • /
    • 2010
  • During feeding oxidizer to the engine, vortices are occurred at lower dome of oxidizer tank inside by various working environments and external forces for liquid propellant feeding system of space launch vehicle. To eliminate the vortices or swirls Anti-Vortex Devices(AVD) shall be installed at inside lower oxidizer tank. Using the numerical analysis, we have confirmed the performance of AVD and analyzed the mass flow rate by feeding time and magnitudes of swirls on the free surface of oxidizer or exit surface according to the AVD number and length. Then we could derive the optimal design of the AVD number and length.

Study on Performance Analysis of Pump within Sump Model with AVD installation by CFD (CFD에 의한 와류방지장치(AVD)가 설치된 흡수정내 펌프의 성능평가에 관한 연구)

  • Choi, Jong-Woong;Park, No-Suk;Kim, Seong-Su;Park, Sang-Su;Lee, Young-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.463-469
    • /
    • 2012
  • The efficiency of the flow mixed pump installed within the bell-mouth in the sump is reduced by the flow characteristics of around intakes. Strong submerged vorticies can be successfully suppressed by installing an AVD(anti-submerged vortex device) on the bottom of pump intake channel just below the bell-mouth. Sump model with AVD device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the efficiency of the pump with the AVD installation in the pump station accurately.

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

Control of Subsurface Vortex on Cylindrical Sump Wall (원통형 펌프 흡입정 벽면에서 발생하는 수중 보텍스 제어)

  • Park, Young Kyu;Jeon, Joon Ho;Lee, Yoen Won
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • The subsurface vortex - which occurs inside the cylindrical sump - was visualized through Computational Fluid Dynamics (CFD) and experiment. The analysis of subsurface vortex inside the cylindrical sump was already carried out using CFD techniques by the first author. To understand the subsurface vortex more clearly, an experimental analysis was carried out with a 1/5th scale model; and the flow rate was calculated according to the similarity law. The experimental results of vortex visualization matches well with the CFD results. The surface roughness model and Anti Vortex Device (AVD) model have been investigated to control the subsurface vortex. For the case of average surface roughness of 1mm and 5mm, the subsurface vortex appears and the vorticity is higher when compared to that of a smooth surface condition. However, for the AVD model, the subsurface vortex is completely removed and the internal flow is stabilized.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.