• Title/Summary/Keyword: AUTO TRACKING

Search Result 135, Processing Time 0.029 seconds

A PATH PLANNING of SMEARING ROBOT on Auto CAD

  • Hyun, Woong-Keun;Shin, Dong-Soo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.539-543
    • /
    • 1999
  • This paper describes a sweeping path planning algorithm for an autonomous smearing robot on commercial autoCAD system. An automatic planner generates a sweeping path pattern by proposed five basic procedures, (1) interfacing architectural CAD system, (2) off-line obstacle map building, (3) scanning the whole workspace for subgoals of sweeping line, (4) tracking sequence of the subgoals, and (5) obstacle avoiding. A sweeping path is planned by sequentially connecting the tracking points in such a way that (1) the connected line segments should be crossed, (2) the total tracking points should be as short as possible, (3) the tracking line should not pass through the obstacle. Feasibility of the developed techniques has been demonstrated on real architectural CAD draft.

  • PDF

Performance Evaluation of Safety Envelop Based Path Generation and Tracking Algorithm for Autonomous Vehicle (안전 영역 기반 자율주행 차량용 주행 경로 생성 및 추종 알고리즘 성능평가 연구)

  • Yoo, Jinsoo;Kang, Kyeongpyo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • This paper describes the tracking algorithm performance evaluation for autonomous vehicle using a safety envelope based path. As the level of autonomous vehicle technologies evolves along with the development of relevant supporting modules including sensors, more advanced methodologies for path generation and tracking are needed. A safety envelope zone, designated as the obstacle free regions between the roadway edges, would be introduced and refined for further application with more detailed specifications. In this paper, the performance of the path tracking algorithm based on the generated path would be evaluated under safety envelop environment. In this process, static obstacle map for safety envelope was created using Lidar based vehicle information such as current vehicle location, speed and yaw rate that were collected under various driving setups at Seoul National University roadways. A level of safety was evaluated through CarSim simulation based on paths generated with two different references: a safety envelope based path and a GPS data based one. A better performance was observed for tracking with the safety envelop based path than that with the GPS based one.

Design of DNP Controller for Robust Control Auto-Systems (DNP에 의한 자동화 시스템의 강인제어기 설계)

  • 김종옥;조용민;민병조;송용화;조현섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-126
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • ;趙賢燮
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.187-187
    • /
    • 1999
  • in order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment system is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulation are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Object Magnification and Voice Command in Gaze Interface for the Upper Limb Disabled (상지장애인을 위한 시선 인터페이스에서의 객체 확대 및 음성 명령 인터페이스 개발)

  • Park, Joo Hyun;Jo, Se-Ran;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.903-912
    • /
    • 2021
  • Eye tracking research for upper limb disabilities is showing an effect in the aspect of device control. However, the reality is that it is not enough to perform web interaction with only eye tracking technology. In the Eye-Voice interface, a previous study, in order to solve the problem that the existing gaze tracking interfaces cause a malfunction of pointer execution, a gaze tracking interface supplemented with a voice command was proposed. In addition, the reduction of the malfunction rate of the pointer was confirmed through a comparison experiment with the existing interface. In this process, the difficulty of pointing due to the small size of the execution object in the web environment was identified as another important problem of malfunction. In this study, we propose an auto-magnification interface of objects so that people with upper extremities can freely click web contents by improving the problem that it was difficult to point and execute due to the high density of execution objects and their arrangements in web pages.

Vision and Lidar Sensor Fusion for VRU Classification and Tracking in the Urban Environment (카메라-라이다 센서 융합을 통한 VRU 분류 및 추적 알고리즘 개발)

  • Kim, Yujin;Lee, Hojun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2021
  • This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.

A Study on Real-time Vehicle Recognition and Tracking in Car Video (차량에 장착되어 있는 영상의 전방의 차량 인식 및 추적에 관한 연구)

  • Park, Daehyuck;Lee, Jung-hun;Seo, Jeong Goo;Kim, Jihyung;Jin, Seogsig;Yun, Tae-sup;Lee, Hye;Xu, Bin;Lim, Younghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.254-257
    • /
    • 2015
  • 차량 인식 기술은 운전자에게 차량 충돌과 같은 위험요소를 사전에 인식시키거나 차량을 자동으로 제어하는 기술로 각광 받고 있다. 본 논문에서는 입력 영상에서 차량이 나타날 수 있는 관심 영역을 설정한 다음 미리 학습된 검출기를 통한 Haar-like와 Adaboost 알고리즘으로 차량 후보 영역을 검출하고 중복된 영역을 제거하기 위인식 기술해 클러스터링 기법을 적용하고, 칼만필터로 프레임 영상에서 차량을 추적 하고, 다시 중복된 영역에 대해 클러스터링 기법을 적용하는 방법을 제안하였다.

  • PDF

A Study on Real-time Pedestrian Recognition and Tracking in Car Video (차량에 장착되어 있는 영상의 주변의 보행자를 인식 및 추적을 위한 연구)

  • Park, Daehyuck;Lee, Jung-hun;Yun, Tae-sup;Seo, Jeong Goo;Kim, Jihyung;Lee, Hye;Xu, Bin;Jin, Seogsig;Lim, Younghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.258-261
    • /
    • 2015
  • 본 논문에서는 주행 중에 보행자의 인식 및 추적을 위해서 차량에서 촬영된 영상정보를 이용하여 주변의 보행자를 찾고, 사고 위험성이 있는 보행자를 인식하기 위해서 보행자 파악 및 보행자와의 거리를 측정하기 위한 연구를 하고자 한다. 본 논문에서는 차량에 정착된 카메라를 통한 보행자 인식 기술에 대해 연구 하였다. 제안한 방법은 보행자 인식 단계에서 Cascasde HOG, Haar-like 알고리즘을 적용하였고, 추적 단계에서 칼만 필터와 클러스터링 기법을 결합하여 실시간으로 보행자를 인식 및 추적하였다.

  • PDF

Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles (자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석)

  • Kim, Changhee;Lee, Dongpil;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

The Vectra M3 3-dimensional digital stereophotogrammetry system: A reliable technique for detecting chin asymmetry

  • Hansson, Stina;Ostlund, Emil;Bazargani, Farhan
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the reliability of the Vectra M3 (3D Imaging System; Canfield Scientific, Parsippany, NJ, USA) in detecting chin asymmetry, and to assess whether the automatic markerless tracking function is reliable compared to manually plotting landmarks. Materials and Methods: Twenty subjects (18 females and 2 males) with a mean age of 42.5±10.5 years were included. Three-dimensional image acquisition was carried out on all subjects with simulated chin deviation in 4 stages (1-4 mm). The images were analyzed by 2 independent observers through manually plotting landmarks and by Vectra software auto-tracking mode. Repeated-measures analysis of variance and the Tukey post-hoc test were performed to evaluate the differences in mean measurements between the 2 operators and the software for measuring chin deviation in 4 stages. The intraclass correlation coefficient (ICC) was calculated to estimate the intra- and inter-examiner reliability. Results: No significant difference was found between the accuracy of manually plotting landmarks between observers 1 and 2 and the auto-tracking mode (P=0.783 and P=0.999, respectively). The mean difference in detecting the degree of deviation according to the stage was <0.5 mm for all landmarks. Conclusion: The auto-tracking mode could be considered as reliable as manually plotted landmarks in detecting small chin deviations with the Vectra® M3. The effect on the soft tissue when constructing a known dental movement yielded a small overestimation of the soft tissue movement compared to the dental movement (mean value<0.5 mm), which can be considered clinically non-significant.