• Title/Summary/Keyword: ATP7A

Search Result 311, Processing Time 0.033 seconds

Association of a c.1084A>G (p.Thr362Ala)Variant in the DCTN4 Gene with Wilson Disease

  • Lee, Robin Dong-Woo;Kim, Jae-Jung;Kim, Joo-Hyun;Lee, Jong-Keuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • Purpose: Wilson disease is an autosomal recessive disorder which causes excessive copper accumulation in the hepatic region. So far, ATP7B gene is the only disease-causing gene of Wilson disease known to date. However, ATP7B mutations have not been found in ~15% of the patients. This study was performed to identify any causative gene in Wilson disease patients without an ATP7B mutation in either allele. Materials and Methods: The sequence of the coding regions and exon-intron boundaries of the five ATP7B-interacting genes, ATOX1, COMMD1, GLRX, DCTN4, and ZBTB16, were analyzed in the 12 patients with Wilson disease. Results: Three nonsynonymous variants including c.1084A>G (p.Thr362Ala) in the exon 12 of the DCTN4 gene were identified in the patients examined. Among these, only p.Thr362Ala was predicted as possibly damaging protein function by in silico analysis. Examination of allele frequency of c.1084A>G (p.Thr362Ala) variant in the 176 patients with Wilson disease and in the 414 normal subjects revealed that the variant was more prevalent in the Wilson disease patients (odds ratio [OR]=3.14, 95% confidence interval=1.36-7.22, P=0.0094). Conclusion: Our result suggests that c.1084A>G (p.Thr362Ala) in the ATP7B-interacting DCTN4 gene may be associated with the pathogenesis of Wilson disease.

P2X7 Receptor-mediated Membrane Blebbing in Salivary Epithelial Cells

  • Hwang, Sung-Min;Koo, Na-Youn;Choi, Se-Young;Chun, Gae-Sig;Kim, Joong-Soo;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.175-179
    • /
    • 2009
  • High concentrations of ATP induce membrane blebbing. However, the underlying mechanism involved in epithelial cells remains unclear. In this study, we investigated the role of the P2X7 receptor (P2X7R) in membrane blebbing using Par C5 cells. We stimulated the cells with 5 mM of ATP for 1${\sim}$2 hrs and found the characteristics of membrane blebbing, a hallmark of apoptotic cell death. In addition, 500 ${\mu}M$ Bz-ATP, a specific P2X7R agonist, induced membrane blebbing. However, 300 ${\mu}M$ of Ox-ATP, a P2X7R antagonist, inhibited ATP-induced membrane blebbing, suggesting that ATP-induced membrane blebbing is mediated by P2X7R. We found that ATP-induced membrane blebbing was mediated by ROCK I activation and MLC phosphorylation, but not by caspase-3. Five mM of ATP evoked a biphasic $[Ca^{2+}]_i$ response; a transient $[Ca^{2+}]_i$ peak and sustained $[Ca^{2+}]_i$ increase secondary to ATP-stimulated $Ca^{2+}$ influx. These results suggest that P2X7R plays a role in membrane blebbing of the salivary gland epithelial cells.

In-vitro Production of Glutathione Using Yeast ATP Regeneration System and Recombinant Synthetic Enzymes from Escherichia coli. (효모의 ATP 재생산계와 대장균 유래의 재조합 생산효소를 이용한 in vitro 글루타치온 생산)

  • 고성영;구윤모
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.213-220
    • /
    • 1998
  • An ATP regeneration system was used for the production of glutathione which was synthesized by a sequential action of ${\gamma}$-glutamyl-cysteine synthetase and glutathione synthetase. The synthetases above were produced in the recombinant E. coli (TG1/pDG7) with the highest specific production yield of 31 mg glutathione/g wet cell. Bakers yeast was considered to have economically a better ATP regeneration system although the glutathione production yield was lower than that of acetate kinase. It was also observed that the ATP regeneration system of bakers yeast was superior to that of Saccharomyces cerevisiae ATCC24858. The yield of glutathione production with bakers yeast was 36% with the ATP concentration of 5 mM. To avoid the cysteine limitation during the early phase of glutatione production, an extra cysteine was added at 2 hours after reaction and the production yield increased 1.91 times. The effectiveness of bakers yeast as an ATP regeneration system was proved by several sets of extra feeding experiments. The product inhibition by glutathione above 14 mM was also observed.

  • PDF

Establishment of an Assay for P2X7 Receptor-Mediated Cell Death

  • Lee, Song-Yi;Jo, Sooyeon;Lee, Ga Eun;Jeong, Lak Shin;Kim, Yong-Chul;Park, Chul-Seung
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • The $P2X_7$ receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human $P2X_7$ receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of $hP2X_7$ receptor. Functional activity of the $hP2X_7$ receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the $hP2X_7$-expressing HEK 293 cells and this cell death could be quantified. Two known $P2X_7$ antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of $hP2X_7$ receptors.

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

Opening of ATP-sensitive $K^+$ Channel by Pinacidil Requires Serine/Threonine Phosphorylation in Rat Ventricular Myocytes

  • Kwak, Yong-Geun;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.293-303
    • /
    • 1999
  • The influences of specific protein phosphatase and protein kinase inhibitors on the ATP-sensitive $K^+\;(K_{ATP})$ channel-opening effect of pinacidil were investigated in single rat ventricular myocytes using patch clamp technique. In cell-attached patches, pinacidil $(100\;{\mu}M)$ induced the opening of the $K_{ATP}$ channel, which was blocked by the pretreatment with H-7 $(100\;{\mu}M)$ whereas enhanced by the pretreatment with genistein $(30\;{\mu}M)$ or tyrphostin A23 $(10\;{\mu}M)$. In inside-out patches, pinacidil $(10\;{\mu}M)$ activated the $K_{ATP}$ channels in the presence of ATP (0.3 mM) or AMP-PNP (0.3 mM) and in a partial rundown state. The effect of pinacidil $(10\;{\mu}M)$ was not affected by the pretreatment with protein tyrosine phosphatase 1B $(PTP1B,\;10\;{\mu}g\;ml^{-1}),$ but blocked by the pretreatment of protein phosphatase 2A $(PP2A,\;1\;U\;ml^{-1})$. In addition, pinacidil $(10\;{\mu}M)$ could not induce the opening of the reactivated $K_{ATP}$ channels in the presence of H-7 $(100\;{\mu}M)$ but enhanced it in the presence of ATP (1 mM) and genistein $(30\;{\mu}M).$ These results indicate that the $K_{ATP}$ channel-opening effect of pinacidil is not mediated via phosphorylation of $K_{ATP}$ channel protein or associated protein, although it still requires the phosphorylation of serine/threonine residues as a prerequisite condition.

  • PDF

Evaluation of Hygienic Status of University Foodservice Operation using ATP bioluminescence Assay (ATP bioluminescence Assay를 이용한 대학 급식시설의 위생상태 평가에 관한 연구)

  • 박영숙
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.195-201
    • /
    • 2000
  • An investigation was conducted to evaluate the hygienic status of university foodservice operation by using conventional swabbing technique plus standard plate count and ATP bioluminescence assay. The results of the study were as follows: 1) For all kitchen boards, knives, feeding trays, and dish towels tested, there was an overall agreement at 84.7% level between the results obtained using ATP bioluminescence and plate count when using a pass/fail cut-off of 3$\times$ control values for ATP assay and 40 CFU(colony forming unit)/㎠ for plate count. 2) The agrement rate between ATP assay and standard plate count was 87.5% for the samples before use, 29.2% for those during use, and 42.7% for those after cleaning and sanitizing. 3) The plate counts of three university foodservice operations for kitchen board, kitchen knife, feeding tray and dish towel were within the acceptable limits when tested before using. However, none of them were within the acceptable limits when tested during using and after cleaning and sanitizing. 4) Above results suggested that an immediate action needs to be taken to reduce the potential danger of cross-contamination and also effective sanitary control methods needs to be developed to improve the sanitary condition.

  • PDF

Effects of Exogenous ATP on Calcium Mobilization and Cell Proliferation in C6 Glioma Cell

  • Lee, Eun-Jung;Cha, Seok-Ho;Lee, Woon-Kyu;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.419-425
    • /
    • 1998
  • To clarify the effect of extracellular ATP in cultured C6 glioma cells, ATP-induced cytosolic free calcium ($[Ca^{2+}]_i$) mobilization and cell proliferation were investigated. ATP-induced $[Ca^{2+}]_i$ increased in a dose-dependent manner $(10^{-7}\;M{\sim}10^{-3}\;M)$. ATP-induced $[Ca^{2+}]_i$ increases were slightly slowed in extracellular calcium-free conditions especially in sustained phase. ATP-induced $[Ca^{2+}]_i$ increment was also inhibited by the pretreatment of U73122, a phospholipase C (PLC) inhibitor, in a time-dependent manner. Suramin, a putative $P_{2Y}$ receptor antagonist, dose-dependently weakened ATP-induced $[Ca^{2+}]_i$ mobilization. Significant increases in cell proliferation were observed at 2, 3, and 4 days after ATP was added. Stimulated cell proliferation was also observed with adenosine at days 2 and 3. This cell proliferation was significantly inhibited by the treatment with suramin. Ionomycin also stimulated cell proliferation in a concentration-dependent manner. In conclusion, we suggest that extracellular ATP stimulates C6 glioma cell proliferation via intracellular free calcium mobilization mediated by purinoceptor.

  • PDF

Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer (평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구)

  • Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF