Browse > Article

Establishment of an Assay for P2X7 Receptor-Mediated Cell Death  

Lee, Song-Yi (Department of Life Science, Gwangju Institute of Science and Technology)
Jo, Sooyeon (Department of Life Science, Gwangju Institute of Science and Technology)
Lee, Ga Eun (Department of Life Science, Gwangju Institute of Science and Technology)
Jeong, Lak Shin (College of Pharmacy, Ewha Womans University)
Kim, Yong-Chul (Department of Life Science, Gwangju Institute of Science and Technology)
Park, Chul-Seung (Department of Life Science, Gwangju Institute of Science and Technology)
Abstract
The $P2X_7$ receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human $P2X_7$ receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of $hP2X_7$ receptor. Functional activity of the $hP2X_7$ receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the $hP2X_7$-expressing HEK 293 cells and this cell death could be quantified. Two known $P2X_7$ antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of $hP2X_7$ receptors.
Keywords
Antagonist; ATP; Cell-based Assay; Cell Death; HEK 293; P2X7 Receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A., et al. (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277-1283   DOI   ScienceOn
2 Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., et al. (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J. Neurosci. 21, 7143-7152   DOI
3 Di Virgilio, F. (1995) The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today. 16, 524-528   DOI   ScienceOn
4 Khakh, B. S., Bao, X. R., Labarca, C., and Lester, H. A. (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322-330   DOI   ScienceOn
5 Roberson, S. J., Ennion, S. J., Evans, R. J., and Edwards, F. A. (2001) Synaptic P2X receptors. Curr. Opin. Neurobiol. 11, 378-386   DOI   ScienceOn
6 Wen, L. T., Caldwell, C. C., and Knowles, A. F. (2003) Poly (ADP-ribose) polymerase activation and changes in Bax protein expression associated with extracellular ATP-medeated apoptosis in human embryonic kidney 293-P2X7 cells. Mol. Pharmacol. 63, 706-713   DOI   ScienceOn
7 Zhang, X. J., Zheng, G. G., Ma, X. T., Yang, Y. H., Li, G., et al. (2004) Expression of P2X7 in human hematopoietic cell lines and leukemia patients. Leuk. Res. 28, 1313-1322   DOI   ScienceOn
8 Rassendren, F., Buell, G. N., Virgino, C., Collo, G., North, R. A., et al. (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 272, 5482-5486   DOI   ScienceOn
9 Kwak, D. H., Kim, S. M., Lee, D. H., Kim, J. S., Kim, S. M., et al. (2005) Differential expression patterns of gangliosides in the ischemic cerebral cortex produced by middle cerebral artery occlusion. Mol. Cells 20, 354-360
10 Brockhaus, J., Dressel, D., Herold, S., and Deitmer, J. W. (2004) Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur. J. Neurosci. 19, 2221-2230   DOI   ScienceOn
11 Le Feuvre, R. A., Brough, D., Touzani, O., and Rothwell, N. J. (2003) Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb. Blood Flow Metab. 23, 381-384   DOI
12 Galligan, J. J. and North, R. A. (2004) Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol. Motil. 16, 64-70   DOI   ScienceOn
13 Nedergaard, M., Ransom, B., and Goldman, S. A. (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523-530   DOI   ScienceOn
14 Brough, D., Le Feuvre, R. A., Iwakura, Y., and Rothwell, N. J. (2002) Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol. Cell. Neurosci. 19, 272-280   DOI   ScienceOn
15 Scemes, E., Suadicani, S. O., and Spary, D. C. (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435-1445   DOI
16 Virginio, C., MacKenzie, A., North, R. A., and Surprenant, A. (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. 519, 335-346   DOI   ScienceOn
17 Le Feuvre, R., Brough, D., and Rothwell, N. (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur. J. Pharmacol. 447, 261-269   DOI
18 Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles A. C., et al. (1999) ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520-528   DOI
19 Wang, X., Arcuino, G., Takano, T., Lin, J., Peng, W. G., et al. (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821-827   DOI   ScienceOn
20 Khakh, B. S. (2001) Molecular physiology of P2X receptors and ATP signaling at synapses. Nat. Rev. Neurosci. 2, 165-174
21 Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B., et al. (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309-13317   DOI   ScienceOn