• Title/Summary/Keyword: ATP-sensitive $K^+$ ($K_{ATP}$) channels

Search Result 63, Processing Time 0.034 seconds

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer (평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구)

  • Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.4
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Protein Kinase C Activates ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Youm, Jae-Boum;Joo, Hyun;Kim, Hyung-Kyu;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.187-193
    • /
    • 2005
  • Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive $K^+$ $(K_{ATP})$ channels. We examined whether protein kinase C (PKC) modulated the activity of $K_{ATP}$ channels by recording $K_{ATP}$ channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12,13-didecanoate (PDD) enhanced pinacidil-induced $K_{ATP}$ channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). $K_{ATP}$ channel activity was not increased by $4{\alpha}-PDD$. In excised insideout patches, PKC stimulated $K_{ATP}$ channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of $K_{ATP}$ channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates $K_{ATP}$ channels in rabbit ventricular myocytes.

Modulation of Cardiac ATP-Sensitive $K^+$ Channels Via Signal Transduction Mechanisms During Ischemic Preconditioning

  • Han, Jin;Kim, Nari;Seog, Dae-Hyun;Kim, Euiyong
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • In several species, a short period of ischemic preconditioning protects the heart by reducing the size of infarcts resulting from subsequent prolonged bouts of ischemia. The mechanism by which activation of ATP-sensitive $K^+$($K_ATP$) channels could provide the memory associated with ischemic preconditioning is still under debate. Several signal transduction pathways have been implicated in the mechanisms of protection induced by ischemic preconditioning. The exact receptor-coupled pathways involved in preconditioning remain to be identified. Likely extracellular agonists are those whose circulating levels increase under conditions that activate $K_ATP$ channels; these conditions include ischemia and ischemic preconditioning. Potential physiological agonists include the following: (1) nitric oxide; (2) catecholamine; (3) adenosine; (4) acetylcholine; (5) bradykinin and (6) prostacycline. The purpose of this review was to understand the mechanism by which biological signal transduction mechanism acts as a link in one or more known receptor-mediated pathways to increase $K_ATP$ channel activity during ischemic preconditioning.

  • PDF

Effects of Adenosine on the Ionic Channel Activated by Metabolic Inhibition in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • The objective of the present study was to characterize the role of adenosine in regulation of ATP-sensitive $K^+\;channel\;(K_{ATP}\;channel)$ activity in isolated rabbit ventricular myocytes using the patch clamp technique. Internal adenosine had little effects on KaTr channel activity. In an outside-out patch with intrapipette GTP and ATP, external adenosine stimulated $K_{ATP}\;channel$ activity. In an inside-out Patch with intrapipette adenosine, ATP reduced $K_{ATP}\;channel$ activity, and GTP stimulated $K_{ATP}\;channel$ activity. Adenosine receptor activation shifted the half-maximal inhibition Of $K_{ATP}\;channel\;from\;70\;to\;241\;{\mu}m$. These results Suggest that activation of adenosine receptors stimulates $K_{ATP}\;channels$ in rabbit ventricular myocytes by reducing the apparent affinity of the channel for ATP. The effect may be important for activating $K_{ATP}\;channels$ during early phase of myocardial ischemia.

  • PDF

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

Identification of ATP-sensitive $K^+$ Conductances in Male Rat Major Pelvic Ganglion Neurons

  • Park, Kyu-Sang;Cha, Seung-Kyu;Lee, Keon-Il;Jun, Jae-Yeoul;Jeong, Seong-Woo;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.247-253
    • /
    • 2002
  • Major pelvic ganglia (MPG) neurons are classified into sympathetic and parasympathetic neurons according to the electrophysiological properties; membrane capacitance (Cm), expression of T-type $Ca^{2+}$ channels, and the firing patterns during depolarization. In the present study, function and molecular expression of ATP-sensitive $K^+\;(K_{ATP})$ channels was investigated in MPG neurons of male rats. Only in parasympathetic MPG neurons showing phasic firing patterns, hyperpolarizing changes were elicited by the application of diazoxide, an activator of $K_{ATP}$ channels. Glibenclamide $(10{\mu}M),$ a $K_{ATP}$ channel blocker, completely abolished the diazoxide-induced hyperpolarization. Diazoxide increased inward currents at high $K^+$ (90 mM) external solution, which was also blocked by glibenclamide. The metabolic inhibition by the treatment with mitochondrial respiratory chain inhibitors (rotenone and antimycin) hyperpolarized the resting membrane potential of parasympathetic neurons, which was not observed in sympathetic neurons. The hyperpolarizing response to metabolic inhibition was partially blocked by glibenclamide. RT-PCR analysis revealed that MPG neurons mainly expressed the $K_{ATP}$ channel subunits of Kir6.2 and SUR1. Our results suggest that MPG neurons have $K_{ATP}$ channels, mainly formed by Kir6.2 and SUR1, with phenotype-specificity, and that the conductance through this channel in parasympathetic neurons may contribute to the changes in excitability during hypoxia and/or metabolic inhibition.

ATP-Sensitive $K^+$ Currents in Gastric Myocytes Isolated from Guinea-pig

  • Jun, Jae-Yeoul;Yeum, Cheol-Ho;Yun, Pyung-Jin;Park, Jong-Seong;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.85-93
    • /
    • 1998
  • ATP-sensitive $K^+$ channels ($K_{ATP}$) were not identified in gastric smooth muscle cells. However, in tension recording of intact gastric circular muscle, lemakalim of $K_{ATP}$ channels opener in other tissues suppressed mechanical contractions and this effect was blocked by glibenclamide, a specific inhibitor of $K_{ATP}$ channels. The aims of this study were to investigate whether $K_{ATP}$ channels exist in gastric smooth muscle of guinea-pig and to know its physiological role. Whole cell $K^+$ currents activated by lemakalim were recorded from freshly isolated cells with a 0.1 mM ATP, 140 mM KCl pipette solutions. Lemakalim (10 ${\mu}M$) increased inward currents of $-224{\pm}34$ pA (n=13) at -80 mV of holding potential in bath solution contained 90 mM $K^+$. Bath-applied glibenclamide (10 ${\mu}M$) inhibited the lemakalim-activated inward currents by $91{\pm}6%$ (n=5). These lemakalim-activated inward currents were reduced by increased intracellular ATP from 0.1 to 3 mM ($-41{\pm}12$ pA) (n=5). The reversal potential of the glibenclamide- sensitive inward currents was $-5.2{\pm}2.4$ mV (n=3) in external 90 mM $K^+$ and shifted to $-14.8{\pm}3.6$ mV (n=3) in external 60 mM $K^+$, which close to equilibrium potential of $K^+$ ($E_K$). External barium and cesium inhibited the lemakalim-activated inward currents dose-dependently. The half-inhibitory dose ($IC_{50}$) of barium and cesium were 2.3 ${\mu}M$ (n=5) and 0.38 mM (n=4), respectively. 10 mM tetraethylammonium (TEA) also inhibited the lemakalim-activated inward currents by $66{\pm}15%$ (n=5). Both substance P (SP) (5 ${\mu}M$) and acetylcholine (ACh) (5 ${\mu}M$) inhibited lemakalim-activated inward currents. These results suggest that $K_{ATP}$ channels exist in the gastric smooth muscle and its modulation by neurotransmitters may play an important role in regulating gastric motility.

  • PDF