• 제목/요약/키워드: ATP synthase

검색결과 86건 처리시간 0.028초

무흡광 색소 생물의 감광수용체 개발 연구(III) -표고버섯 중의 광감응성 Mitochondrial ATP Synthase- (Studies on the Development of Photoreceptor in the Nonchromatophore Organisms (III) -Light- Induced Mitochondrial ATP Synthase in the Lentinus edodes (Berk.) Sing.-)

  • 민태진;이완기;박상신
    • 한국균학회지
    • /
    • 제17권2호
    • /
    • pp.91-98
    • /
    • 1989
  • 1. 표고버섯 중의 미토콘드리아는 설탕 농도 구배 원심분리법에 의하여 설탕 농도 44% 층에서 분리 정제되었다. 2. 파장 변화에 따른 미토콘드리아성 ATP synthase의 활성도는 470 nm의 빛이 조사될 때 효소의 활성도가 가장 크게 증가되었다. 3. 최적 파장 470 nm의 및 조사의 시간변화에 따른 효소의 활성도는 15초 동안 및을 조사하였을 때 가장 크게 활성화되었다. 4. 위의 최적 및 조사 조건에서 이 효소의 최적 pH는 7.5, 최적 온도는 $54^{\circ}C$이었다. 5. 최적 및 조사 조건에서 이 효소는 $Fe^{3+}$, $Fe^{2+}$${SO_4}^{2-}$ 이온에 의하여 활성화되었으나, 반면 $Co^{2+}$, $Mn^{2+}$, $Ca^{2+}$, $Na^+$, ${CO_3}^{2-}$$CN^-$ 이온에 의하여 그 활성이 억제되었다. 6. $K^+$${No_3}^{-}$ 이온은 이 효소의 활성도에 영향을 주지 않았다.

  • PDF

Saccharomyces cerevisiae의 Nonmitochondrial Citrate synthase 분리 및 특성 (Purification and Characterization of Nonmitochondrial Citrate Synthase from Saccharomyces cerevisiae)

  • 조남석;김광수;맹필재
    • 미생물학회지
    • /
    • 제29권4호
    • /
    • pp.230-237
    • /
    • 1991
  • Citrate synthase 1 (mitochondrial) and citrate synthase 2 (nonmitochondrial) were purified from Saccharomyces cerevisiae. The physical and enzymatic characteristics of citrate synthase 2 were ananlyzed in comparison with citrate synthase 1. Both isoenzymes were shown to be dimeric proteins of identical subunits, and the molecular weights of the subunits were estimated to be 48.3kDa for citrate synthase 1 and 47.0kDa for citrate synthase 2, respectively. The optimal pH value for enzyme activity was pH 7.5 for both isoenzymes. However, the optimal temperature for the activity was strikingly different; while the activity of citrate synthase 1 reached its peak at 65.deg.C, that of citrate synthase 2 was maximal at 40.deg.C. Citrate synthase 2 showed much lower thermal and pH stability than citrate synthase 1. In addition, citrate synthase 2 was affected much more by the metal ions such as $Zn^{2+}$ , $Mn^{2+ , and $Co^{2+} than citrate synthase 1. Among the several possible regulatory metabolites tested, ATP showed the strongest inhibitory effect on both enzymes. ADP and NADH were found to have greater effect on citrate synthase 2 than on citrate synthase 1. Kinetic analysis revealed that citrate synthase 2 has approximately 7- and 3.5-fold lower affinity to acetyl CoA and to oxaloacetate, respectively, than citrate synthase 1.

  • PDF

Preliminary Proteomic Analysis of Thiobacillus ferrooxidans Growing on Elemental Sulphur and Fe2+ Separately

  • He, Zhi-guo;Hu, Yue-Hua;Zhong, Hui;Hu, Wei-Xin;Xu, Jin
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.307-313
    • /
    • 2005
  • Thiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Thiobacillus ferrooxidans have been tested, which show lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ and from 4 to 12 days for Thiobacillus ferrooxidans cultivated with elemental sulphur. Differences of protein patterns of Thiobacillus ferrooxidans growing on elemental sulphur and $Fe^{2+}$ separately were investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ ionization (MALDI)-Mass spectrometry and ESI-MS/MS. From the 7 identified protein spots, 11 spots were found more abundant when growing on elemental sulphur. By contrast 6 protein spots were found decreased at elemental cultivation condition. Among the proteins identified, cytochrome C have been previously identified as necessary elements of electron-transfering pathway for Thiobacillus ferrooxidans to oxidize $Fe^{2+}$; ATP synthase alpha chain and beta are expressed increased when Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ as energy source. ATP synthase Beta chain is the catalytic subunit, and ATP synthase alpha chain is a regulatory subunit. The function of ATPase produces ATP from ADP in the presence of a proton gradient across the membrane.

Improved Purification of Thermophilic FoF1-ATP Synthase c-Subunit Rings and Solid-State NMR Characterization of Them in Different Lipid Membranes

  • Bak, Suyeon;Kang, Su-Jin;Suzuki, Toshiharu;Yoshida, Masasuke;Fujiwara, Toshimichi;Akutsu, Hideo
    • 한국자기공명학회논문지
    • /
    • 제17권2호
    • /
    • pp.67-75
    • /
    • 2013
  • ATP synthase produces ATP, a major energy source for metabolic processes in organisms, from ADP and inorganic phosphate in cellular membranes. ATP synthase is known as a rotary motor, in which the c-subunit ring functions as a rotor. In this work, we have tried to develop a more general preparation procedure of thermophilic $F_oc$-ring ($TF_oc$-ring) for NMR measurements. The expression of $TF_oF_1$ is easily affected by various experimental conditions such as temperature, shape and size of a flask, a volume of medium, and shaking rate of an incubator. Accordingly, we have tried to optimize the expression conditions of $TF_oF_1$. $TF_oc$-rings were purified from $TF_oF_1$ according to a reported method. We modified purification procedures to improve purity and yield of $TF_oc$. On top of them, we found a new combination of detergents for the purification at anion-exchange column chromatography. To examine the effect of lipid environments on the structure, the $TF_oc$-rings were reconstituted into two kinds of lipid bilayers, namely, saturated and unsaturated lipid ones. Then, we have compared characteristics of the $TF_oc$-ring structures in these membranes with solid-state NMR.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Bacillus anthracis Spores Influence ATP Synthase Activity in Murine Macrophages

  • Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Ji-Cheon;Yoon, Jang-Won;Oh, Kwang-Keun;Lee, Jung-Ho;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.778-783
    • /
    • 2008
  • Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be down regulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구 (Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study)

  • 정민지;정은정;이신제;김문규;전상식;이택후
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제34권1호
    • /
    • pp.19-31
    • /
    • 2007
  • 목 적: 자궁내막증은 자궁내부에 존재하여야 할 자금내막조직이 자궁 외에 존재하는 질환으로 그 발생기전은 아직 명확하게 밝혀져 있지 않다. 이에 저자들은 자궁내막증 환자와 정상 대조군의 자궁내막조직 간의 유전자 발현의 차이가 자궁내막증의 발병과 관련이 있을 것이라는 가정 하에 DNA microarray 기술을 도입하여 연구를 시행하였다. 연구방법: 2002년 1월부터 2002년 12월까지의 기간 동안 본원 산부인과에서 자궁내막증 환자와 자궁내막증 이외의 다른 부인과적 질환으로 수술을 시행한 환자들을 대상으로 채취한 자궁내막 조직으로 KNU 4.8K cDNA chip을 이용하여 유전자 발현을 비교 연구하였다. 유전자칩으로 자궁내막증 조직에서 발현의 증감을 보였던 유전자 중에서 8종의 유전자를 대상으르 RT-PCR이나 real time RT-PCR 법을 통하여 그 발현 양상을 검증하였다. 결 과: 자궁내막증에 이환된 여성의 자궁내막조직에서 대조군에 비하여 높게 발현되고 있는 것으로 나타난 유전자들은 ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ trarsporting (ATP5C1), LPS induced TNF-$\alpha$ factor 등으로 세포의 에너지 생성과 대사과정 및 신호전달에 관여하는 유전자들이었다. 한편 자궁내막중 환자의 자궁내막조직에서 대조군에 비하여 낮게 발현된 유전자들은 insulin like growth factor II associated protein, EGF-containing fibulin-like EMP1, matrix Gla protein, TGF beta-induced, TGF beta receptor 1(activin A receptor type II-like kinase), cystallin alpha B, fibulin 5, tissue inhibitor of metalloproteinase 3, collage type XII, alpha 1, tissue inhibitor of metalloproteinase 1, decorin 등으로 세포외기질의 구성 및 기능에 관련이 있었다. 결 론: 이상의 DNA mirroarry 및 RT-PCR을 통해 얻어진 결과에서 자궁내막증의 자궁내막조직에서 대조군에 비하여 유전자들의 발현에 차이가 있음을 확인하였다.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • 제25권4호
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.