• 제목/요약/키워드: ATP binding

검색결과 244건 처리시간 0.024초

Escherichia coli내의 ATP-dependent Clp효소의 ATPase 활성 연구 (Properties of ATPase Activity of ATP-dependent Clp Protease in Escherichia coli)

  • 김승호
    • 한국미생물·생명공학회지
    • /
    • 제21권1호
    • /
    • pp.30-35
    • /
    • 1993
  • E.coli에서 발견된 ATP-dependent 효소인 Clp효소 중에서 Clp A의 ATPase 활성에 대한 영향을 검토하였다. Clp효소의 limiting amount으로 나타난 specific 활성은 일정하게 증가하는 효소의존성을 보였다. ATPase 활성을 나타내고 있는 ClP A는 casein에 의하여 활성화되어지며 2분자의 ATP가 결합하고 ATPase 활성을 나타내기 위한 ATP의 분해는 Clp효소의 단백질 분해 활성에 필요하다.

  • PDF

Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis

  • Song, Yafeng;Nikoloff, Jonas M.;Zhan, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.963-977
    • /
    • 2015
  • The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

Isolation of Proteins that Specifically Interact with the ATPase Domain of Mammalian ER Chaperone, BiP

  • Chung, Kyung-Tae;Lee, Tae-Ho;Kang, Gyong-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.192-198
    • /
    • 2003
  • BiP, immunoglobulin binding protein, is an ER homologue of Hsp70. However, unlit other Hsp70 proteins, regulatory protein(s) for BiP has not been identified. Here, we demo strafed the presence of potential regulatory proteins for BiP using a pull -down assay. Since BiP can bind any unfolded protein, only the ATPase domain of BiP was used for the pull -down assay in order to minimize nonspecific binding. The ATPase domain was cloned to produce recombinant protein, which was then conjugated to CNBr-activated agarose. The structural conformation and ATP hydrolysis activity of the recombinant ATPase domain were similar to those of the native protein, light proteins from metabolically labeled mouse plasmacytoma cells specifically bound to the recombinant ATPase protein. The binding of these proteins was inhibited by excess amounts of free ATPase protein, and was dependent on the presence of ATP. These proteins were eluted by ADP. Of these proteins, Grp170 and BiP where identified. while the other were not identified as known ER proteins, from Western blot analyses. The presence of the ATPase-binding proteins for BiP was first demonstrated in this study, and our data suggest similar regulatory machinery for BiP may exist in the ER, as found in prokaryotes and other cellular compartments.

수축중인 근육막에서 actin과 myosin 결합의 구조변화에 관한 연구 (A Study On Structure Change of Binding Actin and Moysin On The Contracting Muscle Membrane)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.380-387
    • /
    • 2008
  • The effects of the applied stretch and MgADP binding on the structure of the actin and myosin cross-bridges in rabbit fibers in the rigor state have been investigatedwith improved resolution by x-ray diffraction using synchrotron radiation. To clarify the structure of the ATP hydrolysis intermediates formed by actin and myosin cross-bridges,the effects of various phosphate analogs in the of MgADP on the structure of the thin and thick filaments in glycerinated rabbit muscle fibers in the rigor state investigated by x-ray diffraction with a short exposure time using synchrotron radiation. These results strongly suggest that when MgADP and phosphate analogs such as metallofluorides(BeF3 and AlF4)and vanadate(VO4(Vi)) were added the rigor fibers in the presence of the ATP-depletion backup system, the intensities of the actin-based layer lines were markedly weakened. We found that the intensity of the 14.5 nm-based meridional reflections increase by 20-50% when phosphate analogs such as metallofluorides(BeF3 and AlF4) and vanadate(VO4(Vi)) was added to the rigor muscle.

Deinococcus radiodurans RecA 단백질의 외가닥 DNA-의존성 ATPase 활성 분석 (Characterization of Single Stranded DNA-Dependent ATPase Activities of Deinococcus radiodurans RecA Protein)

  • 김종일
    • 미생물학회지
    • /
    • 제43권4호
    • /
    • pp.250-255
    • /
    • 2007
  • Deinococcus radiodurans recA는 이 미생물의 방사선 저항성을 나타내는 표현형에 필수적이며 재조합성 DNA 수선 과정에 관여한다. 이 과정에서 RecA 단백질은DNA와 결합하여 반응의 활성 종인 RecA nucleoprotein 필라멘트를 형성한다. DNA-의존성 ATPase 활성과 함께, RecA 단배질의 외가닥 DNA 혹은 이중가닥 DNA와의 상호작용은 RecA 단백질이 관여하는 반응의 중심과정으로 이에 관한 분석을 시도하였다. D. radiodurans RecA 단배질은 DNA에 결합한 DNA-단백질 복합체만이 ATPase 활성을 나타내므로, ATP (혹은 dATP) 가수분해를 측정함으로써 RecA와 외가닥 DNA와의 상호작용 정도를 분석하였다. D. radiodurans RecA 단백질은 외가닥 DNA의 염기 구성의 이질성에 영향을 받았으며, homopolymer인 poly(dT)와의 상호작용에서 가장 높은 가수분해 활성을 보였다. Homopolymer인 합성 DNA-의존성 ATP 및 dATP의 가수분해는 pH 6.0과 9.0의 범위에서 다소 일정한속도로 일어났으며 최적 pH는 7.0과 7.5 사이였다. 외가닥 DNA-의존성 ATPase 활성은 염의 존재에 영향을 받아 KCl이 존재하면 다소 억제되나, K-glutamate가 존재하면 오히려 촉진되었다. RecA 단백질과 외가닥 DNA의 상호작용을 ATP 가수분해로 분석하였을 때 2 mM 이상의 magnesium 이온이 DNA 결합반응에 필요하였으며, 비교적 넓은 범위의 pH에서 외가닥 DNA와의 결합반응이 일어나며, 이러한 결합반응은 당량적인 비(1:3, RecA protein: DNA nucleotide)로 일어났다.

Expression and Characterization of ATP-binding-cassette(ABC) Transporter in Cephabacin Biosynthesis Gene Cluster of Lysobacter lactamgenus

  • Park, Myoung-Jin;Lim, Mi-Ok;Nam, Doo-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.160.1-160.1
    • /
    • 2003
  • In order to confirm the biological function of ORF10 in cephabacin biosynthesis gene cluster of Lysobacter lactamgenus as an ATP-binding-cassette (ABC) transporter, the gene for ORF10 was amplified and subcloned into pET-28a(+) expression vector. After gene induction with 0.5 mM IPTG at 30~! and further cultivation at $30^~$ !. for 8 hr, a lot of the recombinant ORF10 protein was produced as soluble form in cytoplasmic fraction as well as a membrane protein in the membrane fraction as likely as other ABC transporters. (omitted)

  • PDF

랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도 (Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons)

  • 한성규;박진봉;류판동
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

흰쥐 肝미토콘드리아의 非代謝依存性 칼슘 結合에 관한 연구 (Studies on the Metabolism-Independent Calium Binding of the Rat Liver Mitochondria)

  • Kang, Shin-Sung;Ha, Doo-Bong
    • 한국동물학회지
    • /
    • 제13권3호
    • /
    • pp.85-93
    • /
    • 1970
  • 미토콘드리아의 Ca 결합은 물질대사에 의존하지 않는 初期 結合과 에너지 소비를 수반하는 膜透過의 二段階로 일어 난다는 설이 있다. 본 실험에서는 이를 확인키 위하여 흰쥐의 肝에 서 抽出한 미토콘드리아를 $^45 CaCl_2$를 함유한 sucrose-tris chloride 용액에서 incubate 시키면 서 Ca 흡수, 산소소비 및 ATPase 活性을 측정하였다. 미토콘드리아의 Ca 결합량은 온도의 영향을 거의 받지 않으며, succinate 나 ATP의 존재에 의해서도 증가하지 않는다. 반면 산소소비량은 succinate의 존재에 의하여 현저하게 증가되며 또 온도의 상승에 따라 증가된다. ATPase 活性도 온도의 상승에 따라 증가한다. 산소소비량과 Ca의 결합량이 비례하지 않는 것으로 보아 미토콘드리아의 Ca 초기 결합은 물질 대사에 의존하지 않는 것으로 판단된다. 미토콘드리아의 ATPase 活性은 DNP 의 존재에 의하여 증가된다.

  • PDF

Study on the Mechanism of P-glycoprotein Inhibitory Activity of Silymarin in Human Breast Cancer Cell

  • Kwon, Young-Joo;Jung, Ho-Jin;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권5호
    • /
    • pp.315-320
    • /
    • 2006
  • Silymarin showed P-glycoprptein(P-gp) inhibitory activity as much as verapamil, a well-known P-gp inhibitor, by decreasing $IC_{50}$ value of daunomycin(DNM)($16.0{\pm}0.7{\mu}M$), increasing the DNM accumulation($224.9{\pm}3.2%$), and decreasing DNM efflux($58.5{\pm}6.7%$), concurrently. In this study, we clarified the mechanism of action of silymarin for P-gp inhibitory function. First, silymarin may bind to the ATP-binding site and thus, prevent ATP hydrolysis. Second, the P-gp inhibitory activity of silymarin is not related to changing the cellular P-gp level. Third, the cytotoxicity of silymarin was increased in the presence of verapamil, reflecting that silymarin is a competent P-gp substrate against verapamil in the P-gp-overexpressed adriamycin-resistant MCF-7 breast cancer(MCF-7/ADR) cells. Conclusively, silymarin had the P-gp inhibitory activity through the action of competent binding to the P-gp substrate-binding site. Therefore, silymarin can be a good candidate for safe and effective MDR reversing agent in clinical chemotherapy by administering concomitantly with anticancer drugs.