• Title/Summary/Keyword: AT 화산재

Search Result 62, Processing Time 0.023 seconds

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.

Occurrence and Genesis of Obsidian in Gombawi Welded Tuff, Ulleung Island, Korea (울릉도 곰바위용결응회암 내 흑요암의 산출특징과 성인)

  • Im, Ji Hyeon;Choo, Chang Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.105-116
    • /
    • 2017
  • The purpose of this study is to provide the information on genesis of obsidian occurring in the southwestern part of Ulleung Island, Korea, and to discuss its implications for volcanic activity through volcanological and mineralogical properties of obsidian. Obsidian occurs locally at the lower part of the Gombawi welded tuff, showing various complex textures and flow banding. Though obsidian is mostly homogeneous, it is closely associated with alkali feldspar phenocrysts, reddish tuff, and greyish trachyte fragments. The obsidian occurs as wavy, lenticular blocks or lamination composed of fragments. Cooling fractures developed on obsidian glass are characterized by perlitic cracks, orbicular or spherical cracks, indicating that obsidian rapidly quenched to form an amorphous silica-rich phase. It is evident that hydration took place preferentially at the outer rim relative to the core of obsidian, forming alteration rinds. The glassy matrix of obsidian includes euhedral alkali feldspars, diopside, biotite, ilmenite, and iron oxides. Microlites in glassy obsidian are composed mainly of alkali feldspars and ilmenite. Quantitative analysis by EPMA on the obsidian glass part shows trachytic composition with high iron content of 3 wt.%. Accordingly, obsidian formed with complex textures under a rapid cooling condition on surface ground, with slight rheomorphism. Such results might be induced by collapse of lava dome or caldera, which produced the block-and-ash flow deposit and the transportation into valley while keeping high temperatures.

Probable Volcanic Flood of the Cheonji Caldera Lake Triggered by Volcanic Eruption of Mt. Baekdusan (백두산 화산분화로 인해 천지에서 발생 가능한 화산홍수)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yoo, Soon-Young;Kim, Sang-Hyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.492-506
    • /
    • 2013
  • The historical accounts and materials about the eruption of Mt. Baekdusan as observed by the geological survey is now showing some signs of waking from a long slumber. As a response of the volcanic eruption of Mt. Baekdusan, water release may occur from the stored water in Lake Cheonjii caldera. The volcanic flood is crucial in that it has huge potential energy that can destruct all kinds of man-made structures and that its velocity can reach up to 100 km $hr^{-1}$ to cover hundreds of kilometers of downstream of Lake Cheonji. The ultimate goal of the study is to estimate the level of damage caused by the volcanic flood of Lake Cheon-Ji caldera. As a preliminary study a scenario-based numerical analysis is performed to build hydrographs as a function of time. The analysis is performed for each scenario (breach, magma uplift, combination of uplift and breach, formation of precipitation etc.) and the parameters to require a model structure is chosen on the basis of the historic records of other volcanos. This study only considers the amount of water at the rim site as a function of time for the estimation whereas the downstream routing process is not considered in this study.

Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis - A case study of the 18 Aug, 2013 eruption - (천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 - 2013년 8월 18일 분화를 중심으로 -)

  • Kim, Kiyeon;Hwang, Eui-Hong;Lee, Yoon-Kyung;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.259-274
    • /
    • 2014
  • On Aug 18, 2013, Sakurajima volcano in Japan erupted on a relatively large-scale. Geostationary Ocean Color Imager (GOCI) had used to detect volcanic ash in the surrounding area on the next day of this eruption. The geomagnetic variation has been analyzed using geomagnetic data from Cheongyang observatory in Korea and several geomagnetic observatories in Japan. First, we reconstruct geomagnetic data by principal component analysis and conduct semblance analysis by wavelet transform. Secondly, we minimize the error of solar effect by using wavelet based semblance filtering with Kp index. As a result of this study, we could confirm that the geomagnetic variation usually occur at the moment of Sakurajima volcano eruption. However, we cannot rule out the possibilities that it could have been impacted by other factors besides volcanic eruption in other variation's cases. This research is an exceptional study to analyze geomagnetic variation related with abroad volcanic eruption uncommonly in Korea. Moreover, we expect that it can help to develop further study of geomagnetic variation involved in earthquake and volcanic eruption.

Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano (백두산 화산에서 수치모형 분석에 의한 화쇄류의 영향 범위)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Kim, Sunkyeong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.351-366
    • /
    • 2014
  • We assumed the situation where an eruption column had been formed by the explosive Plinian eruption from Mt. Baekdu and that the collapse of eruption column had caused pyroclastic density currents to occur. Based on this assumption, we simulated by using a Titan2D model. To find out about the range of the impacts of pyroclastic density currents by volcanic eruption scenarios, we studied the distance for the range of the impacts by VEIs. To compare the results by each volcanic eruption scenario, we set the location of the vent on the 8-direction flank of the outer rim and on the center of the caldera, the internal friction angle of the pyroclastic density currents as $35^{\circ}$, the bed friction angle as $16^{\circ}$. We set the pile height of column collapse and the vent diameter with various VEIs. We properly assumed the height of the column collapse, the diameter of the vent, the initial rates of the column collapse and the simulation period, based on the VEIs, gravity and the volume of the collapsed volcanic ash. According to the comparative analysis of the simulation results based on the increase of the eruption, the higher VEI by the increase of eruption products, the farther the pyroclastic density currents disperse. To the northwest from the vent on the northeast slope of the outer rim of the caldera, the impact range was 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km or more from VEI=2 to VEI=7, respectively. Once the database has been fully constructed, it can be used as a very important material in terms of disaster prevention and emergency management, which aim to minimize human and material damages in the vicinity of Mt. Baekdu when its eruption causes the pyroclastic density currents to occur.

Characteristics of Elemental Composition of $PM_{2.5}$ Aerosols Measured at Gosan, Jeju (제주 고산에서 측정한 $PM_{2.5}$ 에어로졸의 원소성분 특성연구)

  • 류성윤;김정은;정현록;김영준;한진석;문광주;공부주;안준영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.133-134
    • /
    • 2003
  • 대기 중에 부유하고 있는 입자상 물질은 보통 입경에 따라 2.5$\mu\textrm{m}$ 이하의 미세입자와 2.5$\mu\textrm{m}$ 이상의 조대입자로 나눌 수 있다. 조대입자는 토양 및 해염, 꽃가루, 화산재 및 토양 먼지와 같이 자연발생원에서 주로 생성되며, 인체에 큰 영향을 미치지 않는다. 그러나 미세입자는 화석연료의 연소, 자동차의 배출가스 및 화학물질의 제조공정 등의 인위적 발생원에서 주로 방출되며, 또한 이들 1차 생성분진과는 달리 대기중에서 황산가스나 휘발성 유기화합물 둥이 응축과정을 거쳐 가스상에서 입자상으로 변환되어 생성된 2차 입자도 환경학적으로 매우 중요한 의미를 갖는다. (중략)

  • PDF

Origin of Sangumburi, Jeju Island (제주도 산굼부리의 성인)

  • Kil, Youngwoo;Yun, Sung-Hyo;Lee, Moon Won;Yang, Kyounghee;Seol, Junghwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.283-298
    • /
    • 2016
  • Sangumburi crater, designated as Natural Monument No. 63, recognized as a maar, but precise geological mapping and geological characteristics in the field indicate that Sangumburi crater is a pit crater. Two stages of volcanic activities created Sangumburi pit crater. Lava flow (aphanitic pyroxene basalt I) and associated pyroclastic deposit (pyroclast I), composed of ash and lapilli, were formed at the stage 1. In the stage 2, lava flow (feldspar olivine basalt) was overlain by lava flow (aphanitic pyroxene basalt II) and associated pyroclastic deposit (pyroclast II), composed of agglomerate. Sangumburi pit crater formed at $0.073{\pm}0.036Ma$, determined by Ar-Ar age dating for the feldspar olivine basalt at the stage 2. It is not clear the preferred migration direction of subsurface magma after Sangumburi pit crater formed.

Occurrence and Formation Environment of Boron Deposits in Turkey (터키 붕소광상의 부존특성 및 형성환경)

  • Koh, Sang-Mo;Lee, Bum Han;Lee, Gilljae;Cicek, Murat
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The annual borate production in Turkey is about 3 million tons, which occupies approximately 61 percent of total annual world production. Turkey has five boron deposits including Bigadic, Emet, Kestelek, Kirka, and Sultancayir. At present, Bigadic, Emet, and Kirka deposits are operating. Kirka boron deposit is distributed within volcanoclatic sedimentary group as mainly layered, rarely brecciated and massive types. Major borate is borax associated with colemanite and ulexite. They show a horizontal symmetrical zonation from Na borate (borax) in the center of deposit to Na-Ca borate (ulexite) and Ca-borate (colemanite) in margin. Bigadic boron deposit is known as the largest colemanite deposit in the world. This deposit occurs as two borate bearing horizons in Miocene volcanoclastic sedimentary group. Thickness ranges from several meters to 100 meter with a length of several hundreds meters. Borate ore bodies which are mainly composed of colemanite and ulexite are alternated with claystone, mudstone, tuff and layered limestone as lenticular shape. Sultancayir boron deposit is mainly distributed within gray limestone. Main borate minerals of this deposit are pandermite and ulexite. Pandermite and ulexite occur as colloform aggregate and small veinlet, respectively. Turkish boron deposits are evaporite deposit which were formed in Miocene playa-lake environment. Boron was supplied to the deposits by the volcanic and hydrothermal activities.

Soil Dehydrogenase Activity and Microbial Biomass C in Croplands of JeJu Province (제주지역 농경지 이용유형별 토양 탈수소효소활성과 미생물체량)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Choi, Kyung-San;Kim, Seong-Cheol;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • This study was carried out to evaluate the soil dehydrogenase activity and microbial biomass C with soil type and land use in cropland of JeJu region. Soil chemical properties, dehydrogenase activity, and microbial biomass C were analyzed after sampling from upland (50 sites), orchard (50 sites), paddy (30 sites), horticultural facility (30 sites) in March. Average pH values was at 6.3 in upland soil, however soil chemical properties showed a large spatial variations in both orchard and horticultural facility soil. The Zn and Cu contents increased by the continuous application of pig manure compost in some citrus orchard soil. Soil dehydrogenase activity and microbial biomass C were higher in non-volcanic ash than in volcanic ash soil regardless of land use type. Soil dehydrogenase activity was two to four times higher in upland than in the others. It was at 38.7 ug TPF $24^{h-1}g^{-1}$ in non-volcanic ash of upland soil. Microbial biomass C content was very high in horticultural facility soil and it showed at 216.8 $mg\;kg^{-1}$ in non-volcanic ash. Soil dehydrogenase activity showed a positive correlation with organic matter ($r^2$=0.59), Zn ($r^2$=0.65), and Cu ($r^2$=0.66) in non-volcanic ash horticultural facility soil. There was a negative correlation ($r^2$=0.57) between soil organic matter and dehydrogenase activity in volcanic ash upland soil.

Stratigraphy of Late Quaternary Core Sediments and Comparative Study of the Tephra Layers from the Northwestern Ulleung Basin of the East Sea (울릉분지 북서부 해역의 코어퇴적물에 대한 제4기 후기 테프라 층서 및 테프라층 비교 연구)

  • 김일수;박명호;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2003
  • Three piston cores. obtained from the northwestern Ulleung Basin of the East Sea, are analyzed to study the tephrostratigraphy of the late Quaternary core sediments and to reveal the comparative characteristics of the tephra layers. The cores consist mainly of the muddy sediments that are partly interbedded with lapilli tephra and ash layers. The muds are further divided into hemipelagic and turbiditic mud facies. The hemipelagic facies is dominated by bioturbated mud and crudely laminated mud, whereas the turbiditic facies includes mainly thinly laminated mud and homogeneous mud, and often alternates with non-turbiditic muds. According to microscopic observation and EDX analysis, three tephra layers of the Ulleung-Oki (U-Oki; ca. 9.3 ka), Aira-Tanzawa (AT: ca. 22~24.7 ka) and Ulleung-Yamato (U-Ym; ca. 25~33 ka) are identified in the study cores. Among these, the U-Oki and U-Ym layers, originating from the Ulleung Island, consist mainly of massive-type glass shards with alkali feldspar. Both of the tephra layers contain a lower content of SiO$_2$ (57~66.5 wt.%) and a higher content of Na$_2$O+K$_2$O (11~16 wt.%) than the AT layer (SiO$_2$=75~78.5 wt.%, Na$_2$O+K$_2$O=6.5~9 wt.%) that consists of typical plane-type and/or bubble-wall glass grains. Compared with that of the U-Ym layer, a sedimentary facies of the U-Oki layer is very thick and contains three stratigraphic units, probably due to relatively large and different supplies of pyroclastic sediments. Thus, the eruption of Ulleung Volcano (ca. 7,300 B.C.) is thought to have had a more powerful effect on depositional environment than the U-Ym eruption.