• Title/Summary/Keyword: AT(auto transformer)

Search Result 28, Processing Time 0.034 seconds

The Analysis of Trolley-Rail Short Circuit Current in a Single Track AT Feeding System (단선 AT 급전계통의 전차선-레일 단락 고장전류 분석)

  • Cho, Gyu-Jung;Ryu, Kyu-Sang;Lee, Hun-Do;Heo, Seung-Hun;Kim, Chul-Hwan;Kwon, Sung-Il;Kim, Cheol-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1659-1665
    • /
    • 2015
  • In general, AT(Auto-transformer) is used to improve voltage sag and inductive interference in power lines and communication lines in AC electrical railway feeding system. Especially, Korean AT feeding system has different composition compared to other countries like Japan or France, so that it has some special characteristics. However, relays imported from other countries have been used in Korea, and settings of these relays should be modified and reflect distinct characteristics of Korean AT feeding system. Therefore, study about fault analysis based on modeled AT feeding system is important. In this paper, we modeled a single track AT feeding system by using PSCAD and analyzed fault current flow in case of trolley-rail short circuit fault. Finally, we presented current magnitude of each branch expressed by boosting current of AT.

Analysis Of AT Feeding Systems Considering The Voltage Constraint Conditions Of The Pantagraph (팬타그래프 전압제약조건을 고려한 AT급전계통 해석)

  • Moon, Young-Hyun;Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.652-656
    • /
    • 2006
  • Constant load model is widely used for an electric train to perform the static analysis of AT (Auto Transformer) feeding systems. In this model, the train will be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However there must be some constraints imposed on the pantagraph voltage in actual operations. These constraints are established for the reason of protecting the feeding facilities from excessive rise of regenerative braking voltage or guaranteeing the minimum traction power of train. In normal operating situation, the pantagraph voltage of the train should be maintained within these limits. Keeping these facts in minds, we suggest new methods or analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do. The proposed methods are believed to contribute to the assessment of TCR-TSC for compensating reactive powers too.

Calculation Method of Modification Factors for Fault Location Algorithm Using Boosting Current of Operating Electric Train in AT Feeding System (AT급전계통에서 실제 운행 중인 전기기관차 부하를 이용한 고장점 표정 알고리즘 보정계수 산출 방법)

  • Kim, Cheol-Hwan;Kim, Sung-Ryul;Kwon, Sung-Il;Cho, Gyu-Jung;Kim, Chul-Hwan;Song, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.504-510
    • /
    • 2016
  • In general, a fault locator is installed in Sub-Station of AT(Auto-transformer) feeding system to estimate the fault location and to protect the Korean AT feeding system. Since the line impedance characteristic is different to normal 3-phase transmission line, we need particular modification factors, which can be calculated using fault location recording data, to estimate the accurate fault location. Up to recently, forcible ground test has been used to calculate the modification factors of the fault locator. However, large amount of current is occurred when the forcible ground test is performed, and this current affects to adjacent equipments. Therefore, we proposed a novel calculation method of modification factors, arbitrary trip test, using boosting current of the operating electric train. Through several field test, we confirmed that modification factors for fault locator can be easily calculated by using proposed method. Moreover, we verified the accuracy and stability of the proposed calculation method.

A Study on the Propagation of Harmonic Current in the Traction Power Supply System (철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구)

  • Oh, K.H.;Chang, S.H.;Han, M.S.;Lee, C.M.;Shin, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System (철도 급전시스템에서의 고조파 해석 및 대책 연구)

  • 오광해;이장무;창상훈;한문섭;김길상
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

A Study on Automatic Switching System for Fault Locator (고장점 표정반 자동절체 시스템에 대한 연구)

  • Park, Yong-Bum;Lho, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8927-8932
    • /
    • 2015
  • A directional feeding method at the railway transformer is applied for supplying the power to the electric railway substations, and the pre-installed facilities with common feeder are utilized in preparation for the failure of feeding system and in finding a fault location in case that the catenary failure occurs. However, it is some difficulty in finding the fault location since there is an interface problem with the facilities when the supplying power system operates. In this paper, Auto Fault Locator Transfer Drive System (ALTDS) is designed to search for the fault location efficiently, and the measuring data are obtained and compared with the KORAIL standards. Further, the ground connection test is accomplished 24 times as the verification method, and it is shown that the methodology provides better performance than the existing traditional one.

Fusing Time Characteristics Analysis of Cable according to Temperature and Insulator (온도 및 절연체에 따른 케이블의 단선시간 특성 해석)

  • Kim, Ju-Hee;Kang, Sin-Dong;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.15-20
    • /
    • 2018
  • This paper describes the fusing time characteristics of Light PVC Sheathed Circular Cord(VCTF) and Tray Frame Retardant(TFR) cables according to increased temperature under over current condition. The experimental equation will be used to determine the validity and reliability of the test results. The over current flowed 3, 5 and 10 times higher than the amount of allowable current using DC power supply with DAQ(Data Acquisition) measurement system. An infrared radiation heater, which was controlled by a variable AC auto transformer, was used to increase the temperature from room temperature to 50, 100 and 150 degrees Celsius. First, two type of cables were analyzed those with different cross-sectional areas with in the same structure and those with different structures with in the same cross-sectional areas. Then, it was determined how fusing time had been influenced according to the cross-sectional areas and different structures, respectively. The cable resistance was increased by joule heating according to increasing temperature. Therefore, the allowable current of cable is decreased. Finally, the fusing time of the cable was decreased due to increased temperatures at current flow, which were 3 times the amount of allowable current. The instantaneous breakdown was observed when current flow was 5 and 10 times over the amount of allowable current. The fusing time is directly affected by the structure of cable insulation.

A study on analysis of DVR(Dynamic Voltage Restorer) in electric traction network by using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전기철도급전계통에 DVR(Dynamic Voltage Restorer)해석에 관한 연구)

  • Choi, J.H.;Kim, J.C.;Park, S.M.;Kim, T.S.;Choo, D.W.;Chung, I.Y.;Park, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.283-286
    • /
    • 2003
  • The electric traction load is quite differ from general power system load which is single-phase, high-speed heavy load receiving power from 3-phase power system and also has variable load characteristics over time and space. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. In addition, it is expected that transient voltage sag could affect the safety of feeding system. Thus, in this paper transient analysis and voltage sag compensation of AT(Auto Transformer) feeding system are studied. The fault study of traction network is analysed by using PSCAD/SMTDC simulation tool. In addition, application of DVR in electric traction system is proposed to compensate the voltage sag of traction network which is occurred by the fault of utility source. The results of fault study will be a useful research works for operation and setting of electric traction relay. Also, it can be shown that application of the DVR in electric system is very useful to compensate the voltage sag from the result of related simulated work. The results of study will be a useful research works for management and planning of power quality in electric traction system.

  • PDF