• 제목/요약/키워드: AT&TI

검색결과 6,046건 처리시간 0.032초

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

생체용 Ti-18Nb-6Zr-XO (X = 0~1.5at%) 합금의 형상기억특성에 미치는 산소 농도의 영향 (Effect of Oxygen Content on Shape Memory Characteristics of Ti-18Nb-6Zr-XO (X = 0~1.5at%) Alloys)

  • 박영철;옥지면;오정화;박수호;이준희;김재일
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.617-622
    • /
    • 2011
  • The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were cold-rolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.

압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향 (Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material)

  • 이상목;김수민;위세나;배동현;이근안;이종섭;김용배;배동수
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

Pulsed Laser Deposition에 의해 SrRuO3/SrTiO3 기판위에 여러 가지 증착온도에서 증착된 Pb(Zr0.2Ti0.8)O3 박막의 특성 (Characterization of Pb(Zr0.2Ti0.8)O3 Thin Films Deposited at Various Temperatures on SrRuO3/SrTiO3 Substrates by Pulsed Laser Deposition)

  • 이우성;정관호;김도훈;김시원;김형준;박종령;송영필;윤희근;이세민;최인혁;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.810-814
    • /
    • 2005
  • [ $Pb(Zr_{0.2}Ti_{0.8})O_3/SrRuO_3$ ] heteroepitaxial thin films were deposited at various temperatures on single crystal $SrTiO_3$ substrates by pulsed laser deposition and characterized for the microstructural and ferroelectric properties. The $SrTiO_3$ substartes etched by buffered oxide etch $(pH{\thickapprox}5.8)$ solution for 20s followed by the thermal annealing at $1000^{\circ}C$ for 1h showed the terrace ledges with a 0.4nm height. The $SrRuO_3$ bottom electrodes with a thickness of 52nm grown on $SrTiO_3$ single crystal also exhibit a terrace ledge similar to that of $SrTiO_3$. The PZT thin films were grown with an epitaxial relationship and showed typical P-E hysteresis loops shown at the epitaxial films. The 56nm thick-PZT films deposited at $650^{\circ}C$ exhibit a remanent polarization $(p_r)$ of $80{\mu}C/cm^2$ and a coercive field $(E_c)$ of 160kV/cm.

Effects of Chamber Pressure on Dielectric Properties of Sputtered MgTiO3 Films for Multilayer Ceramic Capacitors

  • Park, Sang-Shik
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.374-378
    • /
    • 2010
  • $MgTiO_3$ thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs. $MgTiO_3$ films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. The intensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resulted from the decrease of kinetic energy of the sputtered atoms. The films annealed at $600^{\circ}C$ for 60min. showed a fine grained microstructure without micro-cracks. The grain size and roughness of the $MgTiO_3$ films decreased with the increase of chamber pressure. The average surface roughness was 1.425~0.313 nm for $MgTiO_3$ films prepared at 10~70 mTorr. $MgTiO_3$ films showed a dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similar to that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressure due to the decrease of grain size and crystallinity. The leakage current density was $10^{-5}\sim10^{-7}A/cm^2$ at 200kV/cm and this value decreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the films deposited at high chamber pressure resulted in a low leakage current density. $MgTiO_3$ films showed a near zero temperature coefficient and satisfied the specifications for NPO type materials. The dielectric properties of the $MgTiO_3$ thin films prepared by sputtering suggest the feasibility of their application for MLCCs.

AISI 304 스테인리스강에 코팅된 Ti/TiN film의 공식거동 (Pitting Behavior of Ti/TiN Film Coated onto AISI 304 Stainless Steel)

  • 박지윤;최한철;김관휴
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.93-100
    • /
    • 2000
  • Effects of Ti content and Ti underlayer on the pitting behavior of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1~1.0wt% Ti were melted with a vacuum melting furnace and heat treated at $1050^{\circ}C$ for 1hr for solutionization. The specimen were coated with l$\mu\textrm{m}$ and 2$\mu\textrm{m}$ thickness of Ti and TiN by E-beam PVD method. The microstructure and phase analysis were conducted by using XRD, XPS and SEM with these specimen. XRD patterns shows that in TiN single-layer only the TiN (111) Peak is major and the other peaks are very weak, but in Ti/TiN double-layer TiN (220) and TiN (200) peaks are developed. It is observed that the surface of coating is covered with titanium oxide (TiO$_2$) and titanium oxynitride ($TiO_2$N) as well as TiN. Corrosion potential on the anodic polarization curve measured in HCl solution increase in proportion to the Ti content of substrate and by a presence of the Ti underlayer, whereas corrosion and passivation current densities are not affected by either of them. The number and size of pits decrease with increasing Ti content and a presence of the coated Ti film as underlayer in the TiN coated stainless steel.

  • PDF

DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구 (A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering)

  • 전성용;김세철
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

$Al/Al_2O_3$ 계면의 젖음특성 및 계면반응 (Wetting Characteristics and Interfacial Reaction at $Al/Al_2O_3$ Interface)

  • 권순용;정대영;최시경;구형회;이종수
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.815-822
    • /
    • 1994
  • Sessile drop studies of molten Al on single crystal sapphire substrate were conducted to understand the wetting behavior and interfacial reaction at Al/Al2O3 interface. To investigate the wetting mechanism, the variation in contact angle was determined with time. The contact angle obtained in this study decreased exponentially with time. This result means that the driving force for wetting is the reduction in interfacial energy between liquid Al and sapphire caused by the interfacial reaction. The closer examination revealed that the reaction was the dissolution of sapphire by molten Al. Ti has been frequently used to improve wetting on ceramic materials. Therefore, the influence of Ti content on the wetting behaviour was investigated in this work. The equilibrium wetting angles of pure Al, Al-0.3 wt%Ti, and Al-1.0 wt%Ti at 100$0^{\circ}C$ were 63$^{\circ}$, 59$^{\circ}$, and 54$^{\circ}$respectively. The difference is considered as the result of the change in interfacial energy caused by the reaction between Ti and sapphire and the interfacial reaction formed the reaction products of varying stoichiometry (TiO, Ti2O3, TiO2 etc.).

  • PDF

Cu/Ti-cappng/NiSi 전극구조 p+/n 접합의 전기적 특성 (Electrical Characteristics of p+/n Junctions with Cu/Ti-capping/NiSi Electrode)

  • 이근우;김주연;배규식
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.318-322
    • /
    • 2005
  • Ti-capped NiSi contacts were formed on $p^+/n$ junctions to improve the leakage problem and then Cu was deposited without removing the Ti-capping layer in an attempt to utilize as a diffusion barrier. The electrical characteristics of these $p^+/n$ diodes with Cu/Ti/NiSi electrodes were measured as a function of drive-in RTA(rapid-thermal annealing) and silicidation temperature and time. When drive-in annealed at $900^{\circ}C$, 10 sec. and silicided at $500^{\circ}C$, 100 sec., the diodes showed the most excellent I-V characteristics. Especially, the leakage current was $10^{-10}A$, much lower than reported data for diodes with NiSi contacts. However, when the $p^+/n$ diodes with Cu/Ti/NiSi contacts were furnace-annealed at $400^{\circ}C$ for 40 min., the leakage current increased by 4 orders. The FESEM and AES analysis revealed that the Ti-capping layer effectively prohibited the Cu diffusion, but was ineffective against the NiSi dissociation and consequent Ni diffusion.

$Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발 (Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator)

  • 신대용;한상목
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF