• 제목/요약/키워드: ASSEMBLAGE

검색결과 496건 처리시간 0.02초

트러스로 보강된 단일기둥시스템의 탄성좌굴강도에 대한 연구 (A Study on Elastic Buckling Strength of Truss-Stayed Single Column System)

  • 김경식
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5984-5989
    • /
    • 2011
  • 양단 핀지지 기둥부재의 중간 위치에 수평재를 연결하고 설치된 수평재의 양끝단과 기둥의 상하끝단을 트러스로 연결된 트러스보강 단일기둥시스템은 보강되지 않은 경우에 비해 그 좌굴강도가 상당수준 향상될 수 있다. 수평재가 설치된 기둥중간지점에서의 수평 및 회전 자유도에 대한 제한하여 기둥의 유효좌굴길이를 줄이는 효과를 통해 강도향상이 구현된다. 본 연구에서는 해석적 해와 탄성 및 비탄성 유한요소해석을 통해 보강된 평면내 단일기둥 시스템의 좌굴강도를 정량적으로 산정하였고 그 결과를 비교하였다. 예제해석을 통해 보강된 단일기둥시스템은 보강되지 않은 단순기둥에 비해 최대 8배까지 좌굴강도가 향상될 수 있음이 확인되었다.

경계요소법을 위한 3차원 자동요소분할 (3D Automatic Mesh Generation Scheme for the Boundary Element Method)

  • 이향범;이상훈;김형석;이기식;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Modern Sedimentary Environment of Jinhae Bay, SE Korea

  • Park, Soo-Chul;Lee, Kang-Wook
    • Journal of the korean society of oceanography
    • /
    • 제31권2호
    • /
    • pp.43-54
    • /
    • 1996
  • Jinhae Bay, one of the largest tidal bays on the southern coast of Korea, is an area with thick accumulations of recent, fine-grained sediments, mainly supplied from the Nakdong River. The preponderance of silt and clay particles reflects the large quantity of sediments transported in suspension. Although the clay mineral assemblage is similar to that derived from the nearby Nakdong River, relatively high concentration (3-9%) of smectite suggests some local input of fine particles from several streams around the bay or some contribution from the offshore water that may be influenced by the Tsushima Current. The content of organic matters in sediments is as high as 12%, and their C/N ratios imply that they are comprised of mixtures derived from marine plankton and terrestrial plants. $^{210}Pb$ excess activity profiles of sediment cores yield an average sedimentation rate (a 100-year time scale) of about 2-5 mm/yr, which coincides well with the long-term sedimentation rate (a 1000-year time scale) estimated from the sediment isopach map. On the basis of sediment bulk density and sedimentation rate, an annual sink of mud in the bay is estimated approximately 1.0 ${\times}$ $10^{6}$ tons per year.

  • PDF

멸종위기야생생물 II급인 꼬마잠자리(Nannophya pygmaea)와 서식처의 보호 및 보존 조치에 관한 제언 (Suggestions for Protecting and Preserving the Level II Endangered Species Nannophya pygmaea in Korea)

  • 오기철;노기현;이황구;김동건
    • 환경생물
    • /
    • 제35권4호
    • /
    • pp.545-548
    • /
    • 2017
  • Nannophya pygmaea (commonly known as the scarlet dwarf dragonfly) was designated as an endangered species, level II, by the Ministry of Environment of Korea in 1994; it has been used as a flagship species for the protection and preservation of wetlands. Over 25 sites in Korea have been identified as the habitat of Nannophya pygmaea. However, most of these habitats have proven to be unstable, and there have been subsequent changes in the assemblage structure and organization. Most habitats changed to become grasslands or plain ground, and now only five habitats remain. Although efforts have been made to protect the Nannophya pygmaea as an endangered species, their habitat loss has increased, caused by natural succession and drought. Therefore, we need to make stronger protections in the preservation manual of level II endangered species, particularly Nannophya pygmaea, and its native habitats in Korea.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Subspace search mechanism and cuckoo search algorithm for size optimization of space trusses

  • Kaveh, A.;Bakhshpoori, T.
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.289-303
    • /
    • 2015
  • This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the computational time for convergence of population based metaheusristic algorithms. The selected metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses. The complexity of structural optimization problems can be partially due to the presence of high-dimensional design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each subspace. Optimizer updates the design variables for each subspace independently. Updating rules require candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to work with less number of population (42%), as a result reducing the time of convergence, in exchange for some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of complexity. This suggests its applicability to other algorithms and other complex finite element-based engineering design problems.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

단일 프리즘 텐세그리티 구조의 형상 변화 과정 해석을 위한 정식화 (Formulation for Shape Change Procedure of Single Prism Tensegrity Structure)

  • 김미희;양대현;강주원;김재열
    • 대한건축학회논문집:구조계
    • /
    • 제34권5호
    • /
    • pp.3-11
    • /
    • 2018
  • Since the tensegrity structure is flexible and variable, the study on the mobility to the tensegrity has been conducted. However, it is difficult to apply the tensegrity to the architecture field due to several limits. This paper describes the methodology for the analysis of the shape change process of single prism tensegrity structure as an initial study. To apply the tensegrity structure to the architectural field, the assemblage and mathematical formulation procedures of the single prism tensegrity structures are carried out. And single prism tensegrity are presented to the computational strategies for simulate the shape change of those structures. Next, the investigation of structural behaviors through various cases of target displacements is described. Also, the summary of these methods in algorithms is illustrated. As a result it is confirmed that the single prism tensegrity structure model converges 99% on average to a given target node by using the proposed algorithm. Therefore, it is confirmed that the proposed algorithm and program are suitable for shape change analysis of single prism tensegrity structure model.