• Title/Summary/Keyword: ASR expansion

Search Result 49, Processing Time 0.024 seconds

ASR Resistance of Ternary Blended Binder Adding Ultra Fine Mineral Admixture (고분말도 광물성 혼화재를 혼입한 삼성분계 결합재의 ASR 저항성 평가)

  • Jeon, Sung Il;Ahn, Sang Hyeok;An, Ji Hwan;Yun, Kyung Ku;Nam, Jeong-Hee
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-89
    • /
    • 2013
  • PURPOSES : This study is to evaluate ASR(alkali silica reactivity) resistance of ternary blended binder adding ultra fine mineral admixture. METHODS : This study analyzes ASR expansion using ASTM C 1260 and 1567. RESULTS : This study showed that the fineness of mineral admixture had no effect on ASR expansion. The expansion of ternary blended binder(UFFA 20%+FGGBS 10%) were below 0.1%, and this binder met the ASR standard. Also when adding the CSA expansion agent, ASR expansion slightly decreased. The expansion of latex modified mixture increased by 80% comparing plain mixture. CONCLUSIONS : Ternary blended binder met the ASR standard, and this binder is available in concrete bridge deck overlay.

The Effect of the Residual Mortar of Recycled Concrete Aggregate on Alkali Silica Reaction (순환/재생골재의 잔류 모르타르 성분이 알칼리 실리카 반응성에 미치는 영향 평가)

  • Kim, Jeonghyun;Kim, Namho;Yang, Sungchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR). METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate. RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate. CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products (폐유리와 산업부산물을 사용한 모르터의 팽창특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.440-448
    • /
    • 2002
  • Waste glass has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of waste glass color(amber, emerald-green), industrial by-products(ground granulated blast-furnace slag, fly ash), and the content of industrial by-products for reducing ASR expansion caused by the waste glass. The possibility of using glass ground as pozzolanic properties was also analyzed. From the result of this study, the pessimum size of waste glass was 2.5∼1.2 mm regardless of waste glass color. And the smaller than 2.5∼1.2 mm waste glass is, the more decreasing expansion of ASR is. Also, the combination of waste glass with industrial by-products have an effect on reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass, and the glass ground of less than 0.075 mm is applicable as a pozzolanic material.

Characteristics of Alkali-Silica Reaction Product of Mortar Bar by ASTM C 1260 Test (ASTM C 1260 시험 콘크리트 시편의 알칼리-실리카 반응 생성물 특징)

  • Hong, Seung-Ho;Yun, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.541-544
    • /
    • 2006
  • This study was performed to proof expansion effect of the mortar bar due to Alkali-silica Reaction (ASR) by ASTM C 1260 test. Recently, the failure case of cement concrete pavement by ASR was reported in Korea. Cement concrete structures are caused crack by ASR. The service life of cracked cement concrete structures by ASR will be shorted. In this study, crushed the slate rock producted Chungcheongnamdo Boryeong was caused 0.3% expansion at 14 days due to ASR by ASTM C 1260 test. The particular spectrum showed that the ASR gel was analyzed contents included Si, Na, K, and Ca by EDX (electron dispersive X-ray spectrometer). It was verified that the crushed aggregate was caused expansion by ASR in Korea.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Mortar Containing Waste Glass and By-products (폐유리 및 산업부산물을 혼입한 모르터의 ASR에 관한 실험적 연구)

  • Lee, Bong-Chun;Kwon, Hyuk-Joon;Kim, Jeong-Hwan;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.93-98
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of clear waste glass grading, and by-products(fly ash, blast-furnace slag) and by-products content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum grading can be found. Also, when the by-products are used with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass.

  • PDF

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products

  • Park, Seung-Bum;Lee, Bong-Chun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.125-132
    • /
    • 2006
  • Waste glass has been increasingly used in industrial applications. One shortcoming in the utilization of waste glass for concrete production is that it can cause the concrete to be weakened and cracked due to its expansion by alkali-silica reaction(ASR). This study analyzed the ASR expansion and strength properties of concrete in terms of waste glass color(amber and emerald-green), and industrial by-products(ground granulated blast-furnace slag, fly ash). Specifically, the role of industrial by-products content in reducing the ASR expansion caused by waste glass was analyzed in detail. In addition, the feasibility of using ground glass for its pozzolanic property was also analyzed. The research result revealed that the pessimum size for waste glass was $2.5{\sim}1.2mm$ regardless of the color of waste glass. Moreover, it was found that the smaller the waste glass is than the size of $2.5{\sim}1.2mm$, the less expansion of ASR was. Additionally, the use of waste glass in combination with industrial by-products had an effect of reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass. Finally, ground glass less than 0.075 mm was deemed to be applicable as a pozzolanic material.

An Experimental Study on Alkali-Silicate Reaction of Fiber Reinforced Concrete Containing Waste Glass (폐유리를 혼입한 섬유보강 콘크리트의 알카리-실리카 반응에 관한 실험적 연구)

  • Lee, Bong-Chun;Lee, Taek-Woo;Kwon, Hyuk-Joon;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.49-54
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of brown waste glass content, and fibers(steel fiber, polypropylene fiber) and fiber content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste g1ass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only Waste glass ( $80^{\circ}C$ $H_{2}$ O curing).

  • PDF

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

Comparison of ASR Mitigation Methodologies

  • Islam, Mohammad S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.315-326
    • /
    • 2014
  • This study evaluates the dosages of Class F fly ash, lithium nitrate and their combinations to suppress the excessive expansion caused by alkali-silica reactivity (ASR). In order to serve the proposed objective, the mortar bar specimens were prepared from (1) four dosages of Class F fly ash, such as 15, 20, 25 and 30 % as a partial replacement of Portland cement, (2) up to six dosages of lithium nitrate, such as lithium-to-alkali molar ratios of 0.59, 0.74, 0.89, 1.04, 1.19 and 1.33, and (3) the combination of lithium salt (lithium-to-alkali molar ratio of 0.74) and two dosages of Class F fly ash (15 and 20 % as a partial replacement of Portland cement). Percent contribution to ASR-induced expansion due to the fly ash or lithium content, test duration and their interaction was also evaluated. The results showed that the ASR-induced expansion decreased with an increase in the admixtures in the mortar bar. However, the specimens made with the both Class F fly ash and lithium salt produced more effective mitigation approach when compared to those prepared with fly ash or lithium salt alone. The ASR-induced expansions of fly ash or lithium bearing mortar bars by the proposed models generated a good correlation with those obtained by the experimental procedures.