• Title/Summary/Keyword: ASPEN simulation

Search Result 84, Processing Time 0.022 seconds

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

Steady-state Simulation and Energy-saving Optimization of Monoethylene Glycol Production Process (모노에틸렌 글리콜 생산공정의 정상상태 모사 및 에너지 절약 최적화 연구)

  • Kim, Tae Ki;Jeon, In Cheol;Chung, Sung Taik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.903-914
    • /
    • 2008
  • This study was undertaken for the production capacity expansion and energy saving through entire process simulation and optimization for the commercial process of manufacturing monoethylene glycol as a staple from ethylene oxide. Aspen $Plus^{TM}$(ver. 2006) was employed in the simulation and optimization work. The multicomponent vapor-liquid equilibria involved in the process were calculated using the NRTL-RK equation. As for the binary interaction parameters required for a total of 91 binary systems, those for 8 systems were self-supplied by the simulator, those for 28 systems were estimated through regression of the VLE data in the literature, and the remainder were estimated with the estimation system built in the simulator. Subsequent to ascertaining the accuracy of the generated parameters through comparison between actual and simulated process data, sensitive variables highly affecting the process were searched and selected using sensitivity analysis tool in the simulator. The optimum operating conditions minimizing the total heat duty of the process were investigated using the optimization tool based on the successive quadratic programming in the simulator.

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation (수소 동위원소 분리를 위한 초저온증류공정 모사)

  • Noh, Sanggyun;Rho, Jaehyun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4643-4651
    • /
    • 2013
  • In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.

The Study on Synthesis Gas Characteristics Following Different Injection Condition of Oxidizing Agent Through Simulation of Underground Coal Gasification (지중 석탄가스화 공정 시뮬레이션을 통한 산화제 주입조건에 따른 합성가스 특성에 대한 연구)

  • Jang, Dong-Ha;Yoon, Sang-Phil;Kim, Hyung-Taek;Kim, Jeong-Gyoo;Cho, Won-Jun;Ju, Woo-Sung;Lee, Jin-Wook;Lee, Chan
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.28-36
    • /
    • 2013
  • The underground coal which is buried in the ground will have a lot of attention to overcome energy crisis as an energy resources standpoint. Many studies of underground coal gasification have been also conducted because of its advantage which does not require mining. In this study, the simulation of underground coal gasification process was carried out with Aspen Plus. This study was executed by Rock Mountain 1 Underground Coal Gasification project in the United States in the late 1980s as a reference. Sensitivity analysis proceeded to investigate synthesis gas characteristics following different injection condition of oxidizing agent. The underground coal gasification model has been implemented. That is divided into drying, pyrolysis, char gasification and the simulation results was confirmed by the production gas flow, yield of synthesis gas and amount of gasified carbon from results of the actual experimental data.

Simulation of Separation and Purification Process of 50 kg/day Pilot Plant for DME Production (일일 50 kg DME 생산을 위한 파일럿 플랜트 분리 정제공정 모사)

  • Cho Jung-Ho;Cho Won-Il;Na Young-Jin;Shin Dong-Keun;Rhim Kye-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.22-26
    • /
    • 2006
  • In this study, modeling and simulation works using Aspen Plus were carried out for DME separation and purification process of pilot plant for the daily production of 50 kg of DME. For modeling of the entire DME separation unit, NRTL liquid activity coefficient model was used for the prediction of liquid phase non-idealities, Henry's law option was also used for the estimation of solubilities of light gases in solvents and SRK equation of state model was utilized for the description of vapor phase non-idealities. DME having over 98 wt% purity was obtained as a side distillate product in a DME purification column.

  • PDF

Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB) (감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사)

  • Kim, Tae Ho;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. D-limonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at $120^{\circ}C$ for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as $H_{Lim}=8.55$ and $H_{imp}=0.223$ from the result of HPLC analysis. 4-bed SMB of limonene simulation with $0.46{\times}25cm$ columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing $m_2$ and $m_3$ values in triangle diagram. The highest purity was 98.59% at $m_2=2.57$, $m_3=9.55$. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

The Simulation Study of Operating Characteristics of IGCC Power Plant with Various Feedstock (공급원료에 따른 IGCC 플랜트 운전특성에 대한 전산해석 연구)

  • Shim, Hyun-Min;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.433-436
    • /
    • 2007
  • 가스화기술은 화석연료에 의한 기존의 화력발전기술을 대체할 수 있는 차세대 발전기술로 여겨지고 있어 전 세계적으로 기술개발은 물론 상용 플랜트를 앞 다투어 도입 건설 중에 있다. 현재 국내에서도 2014년까지 실증플랜트 완공에 매진을 가하고 있는 실정이다. 가스화기술은 온실가스인 이산화탄소를 동시에 감축하면서 전력뿐만 아니라 수소, DME, 화학원료와 같은 2차 고급 에너지원을 생산할 수 있다는 장점을 가지고 있다. 이 연구에서는 ASPEN plus를 이용하여 다양한 원료 공급에 따른 300 MW급 IGCC 플랜트에 대한 운전 특성을 알아보고자 하였다. 가스화기에 공급되는 원료는 석탄(역청탄), 중질유(납사, 벙커C유) 등으로 구분해 고려하였으며, 가스화 플랜트 해석모델에 대한 성능을 평가하기 위하여 해외에서 운전 중인 상용 IGCC 플랜트에 대한 운전자료와 상대오차로 비교 산출해 검증하였다. 그 다음으로 가스화(gasification)공정, 산가스 제거(acid gas removal)공정, 복합발전 공정(combined cycle)등과 같은 IGCC 플랜트를 구성하고 있는 각각의 단위공정에 대한 운전 특성에 대한 해석결과를 확인하였다. 해석 결과를 바탕으로 가스화기의 냉가스 효율(cold gas efficiency)과 탄소 전환율(carbon conversion), 산가스 제거공정에 대한 이산화탄소 포획 성능과 복합발전에 따른 플랜트 발전량 및 발전 효율(plant net efficiency)을 예측하였다.

  • PDF

Onboard CO2 Capture Process Design using Rigorous Rate-based Model

  • Jung, Jongyeon;Seo, Yutaek
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.168-180
    • /
    • 2022
  • The IMO has decided to proceed with the early introduction of EEDI Phase 3, a CO2 emission regulation to prevent global warming. Measures to reduce CO2 emissions for ships that can be applied immediately are required to achieve CO2 reduction. We set six different CO2 emission scenarios according to the type of ship and fuel, and designed a monoethanolamine-based CO2 capture process for ships using a rate-based model of Aspen Plus v10. The simulation model using Aspen Plus was validated using pilot plant operation data. A ship inevitably tilts during operation, and the performance of a tilted column decreases as its height increases. When configuring the conventional CO2 capture process, we considered that the required column heights were so high that performance degradation was unavoidable when the process was implemented on a ship. We applied a parallel column concept to lower the column height and to enable easy installation and operation on a ship. Simulations of the parallel column confirmed that the required column height was lowered to less than 3 TEU (7.8 m).

Study on Control Efficiency of Thermally Coupled Distillation Column for Reformate Fractionation Process (Reformate 분리공정에서의 열복합 증류탑 제어구조에 관한 연구)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3774-3778
    • /
    • 2012
  • A dynamic simulation of a fully thermally coupled distillation is conducted for the design of a possible operation scheme, and its performance is examined with an example process of reformate fractionation process. The outcome of the dynamic simulation indicates that the column can be operated by using a $3{\times}3$ control structure. The structure consists of three controlled variables of the compositions of overhead, side products and bottom and three manipulated variables of the flow rate of reflux, liquid split ratio between a main column and a prefractionator and steam.