• 제목/요약/키워드: ASCE41-06

검색결과 9건 처리시간 0.02초

Simplified methods for seismic assessment of existing buildings

  • Tehranizadeh, Mohsen;Amirmojahedi, Maryam;Moshref, Amir
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1405-1428
    • /
    • 2016
  • Besides the complex instructions of guidance documents for seismic rehabilitation of existing buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse mechanism, lateral strength and displacement capacity of the structure. The present study is focused on verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of existing buildings. For this, three different special steel moment and braced frames are assessed under these two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria.

세장한 가새가 사용된 철골모멘트골조 공장시설물의 내진 성능평가 (Seismic Performance Evaluation of Steel Moment Frame Factory Building with Slender Braces)

  • 김동연;조재철;황선우;김태진;김종호
    • 한국지진공학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-43
    • /
    • 2018
  • 'Seismic Performance Evaluation Method for Existing Buildings (2013)' developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Nonlinear analysis of RC structure with massive infill wall exposed to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.811-828
    • /
    • 2016
  • This study aims to present nonlinear time history analysis results of double leaf cavity wall (DLCW) reinforced concrete structure exposed to shake table tests. Simulation of the model was done by a Finite Element (FE) program. Shake table experiment was performed at the National Civil Engineering Laboratory in Lisbon, Portugal. The results of the experiment were compared with numeric DLCW model and numeric model of reinforced concrete structure with unreinforced masonry wall (URM). Both DLCW and URM models have two bays and two stories. Dimensions of the tested structure and finite element models are 1:1.5 scaled according to Cauchy Froude similitude law. The URM model has no experimental results but the purpose is to compare their performance level with the DLCW model. Results of the analysis were compared with experimental response and were evaluated according to ASCE/SEI 41-06 code.

A simplified evaluation method of skeleton curve for RC frame with URM infill

  • Jin, Kiwoong;Choi, Ho
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, a simplified evaluation method of the skeleton curve for reinforced concrete (RC) frame with unreinforced masonry (URM) infill is proposed in a practical form, based on the previous studies. The backbone curve for RC boundary frame was modeled by a tri-linear envelope with cracking and yielding points. On the other hand, that of URM infill was modeled by representative characteristic points of cracking, maximum, and residual strength; also, the interaction effect between RC boundary frame and the infill was taken into account. The overall force-displacement envelopes by the sum of RC boundary frame and URM infill, where the backbone curves of the infill from other studies were also considered, were then compared with the previous experimental results. The simplified estimation results from this study were found to almost approximate the overall experimental results with conservative evaluations, and they showed much better agreement than the cases employing the infill envelopes from other studies.

Effect of column loss location on structural response of a generic steel moment resisting frame

  • Rezvani, Farshad Hashemi;Jeffers, Ann E.;Asgarian, Behrouz;Ronagh, Hamid Reza
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.217-229
    • /
    • 2017
  • The effect of column loss location on the structural response of steel moment resisting frames (MRF) is investigated in this study. A series of nonlinear static and dynamic analyses were performed to determine the resistance of a generic frame to an arbitrary column loss and detect the structural members that are susceptible to failure progression beyond that point. Both force-controlled and deformation-controlled actions based on UFC 4-023-03 and ASCE/SEI 41-06 were implemented to define the acceptance criteria for nine APM cases defined in this study. Results revealed that the structural resistance against an arbitrary column loss in the top story is at least 80% smaller than that of the bottom story. In addition, it was found that the dynamic increase factor (DIF) at the failure point is at most 1.13.

거시적 모델을 다르게 고려한 철근콘크리트 벽체의 비선형 해석 연구 (Research on the Non-linear Analysis of Reinforced Concrete Walls Considering Different Macroscopic Models)

  • 신지욱;김준희;유영찬;최기선;김호룡
    • 한국지진공학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-11
    • /
    • 2012
  • 본 연구에서는 주기하중에 대하여 거시적 모델링 방법을 다르게 적용하여 철근콘크리트 벽체의 비선형 해석을 수행하고 기존에 나타난 실험 연구와 비교/분석하였다. ASCE41-06에서 제시하는 높이-길이 비에 따른 벽체의 파괴유형을 참고하여 기존에 수행된 실험연구 중에서 높이-길이비가 3.0을 초과하는 세장한 벽체와 높이-길이비가 1.5인 낮은 벽체를 선택하였다. 각 실험체에 대하여 거시적 모델을 다르게 고려하여 비선형 해석을 수행하였다. 본 연구에서 적용한 거시적 모델은 휨에 대한 거동을 정확히 묘사할 수 있는 방법과 벽체의 복부에서 발생되는 대각 전단을 고려할 수 있는 방법이다. 세장한 벽체는 거시적 모델에 따른 실험과 해석의 결과 차이가 거의 없는 것으로 나타났지만 낮은 벽체는 모델링 방법에서 고려할 수 있는 요소에 의해 이력 거동이 크게 달라지는 것으로 조사되었다. 또한, 높이-길이 비가 1.5인 철근콘크리트 벽체가 건축물에 적용된 경우 정확한 횡 저항능력을 평가하기 위해서 복부의 대각 압축 전단을 고려할 수 있는 모델을 사용하는 것이 타당하다.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

채움벽 두께에 따른 철근콘크리트 조적채움벽 골조의 면내하중에 대한 유한요소해석 (Finite Element Analysis of Reinforced Concrete Masonry Infilled Frames with Different Masonry Wall Thickness Subjected to In-plane Loading)

  • 김충만;유은종;김민재
    • 한국전산구조공학회논문집
    • /
    • 제29권1호
    • /
    • pp.85-93
    • /
    • 2016
  • 본 논문에서는 범용유한요소해석 프로그램인 ABAQUS를 사용하여 국내에서 사용되는 콘크리트벽돌을 조적채움벽으로 가진 철근콘크리트 골조를 대상으로 유한요소해석을 실시하였다. 해석대상은 순수골조, 채움벽의 두께가 0.5B인 골조, 두께가 1.0B인 골조의 3종류이다. 철근콘크리트 골조 및 채움벽의 재료특성은 재료시험 결과로부터 구하였으나 두께가 1.0B인 채움벽의 경우 벽돌의 쌓기방법의 차이에 의해 0.5B 두께의 실험체보다 4배 정도 증가된 인장강도를 사용하였다. 유한요소 해석결과는 실험을 통해 구한 하중-변위관계 및 변위각에 따른 균열양상을 상당히 정확하게 예측하였다. 유한요소해석 결과의 분석을 통해 조적채움벽과 골조사이의 접촉응력 및 골조의 전단력과 휨모멘트를 산정하였다.