• Title/Summary/Keyword: ARTIFICIAL LIGHT

Search Result 866, Processing Time 0.028 seconds

Current States Investigation and Reduction Method Proposal for the Light Pollution Improvement of Chungbuk Area (빛 공해 개선을 위한 충북지역 현황조사와 저감 방안)

  • Kim, Soo-Hwan;Choi, Kyu-Wan;Park, Min-Gyu;Moon, Jong-Fil;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.153-158
    • /
    • 2015
  • Lights from cities have been a grateful outcome of industrialization and a barometer of how developed the city is. However, indiscriminate exposure to artificial lights caused displeasure to people, ecological crisis to the nature, and overuse of energy. for example, excessive light is cause serious diseases such as sleep disorders, cancer in human, declining populations caused by reducing the ability to reproduce for animals and Plant yield is reduced. Therefore, each local governments have came up with ordinances in accordance with the law "Light Pollution Prevention Act". Accordingly, we've analyzed current Chungcheongbuk-do's current states investigation and reduction method proposed for the light pollution act.

Interior heating effect in an office building according to heat properties of light fixture (업무용 건축물의 실내 조명기구 특성에 따른 발열 효과에 관한 연구)

  • Lee, Yoon-Jin;Ahn, Byung-Lip;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Kim, Tae-Yeon
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • Purpose: Generally, 30% of the total energy consumption in office building is used for artificial indoor lightings, and almost 75-85% of electric power in fluorescent and Light-Emitting Diode (LED) lightings can be dissipated as a form of heat into indoor environment. The heat generated by indoor lightings can cause the increase of cooling load in office buildings. Thus, it its important to consider indoor lightings as a heat and light source, simultaneously. Method: In this study, we installed two kinds of indoor lightings including fluorescent and LED lightings and measured surface temperature of both indoor lightings. In addition, we obtained ambient temperature of indoor space and finally calculated total heat dissipated from plenum area and surface of lightings. Result: Total indoor heat gain was 87.17Wh and 201.36Wh in cases of six 40W-LED lightings and 64W-fluorescent lightings, respectively.

Development of Nondestructive Grouping System for Soil Organic Matter Using VIS and NIR Spectral Reflectance

  • Sung J.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This study was conducted to develop a nondestructive grouping system for soil organic matter using visible (VIS) and near infrared (NIR) spectroscopic method. The artificial light was irradiated on the cut soil surface at 15 to 20 cm depths to reduce the errors of light at open field. The reflectance energy from the cut soil surface was measured to group the soil organic matter using VIS/NIR light sensor with narrow band pass filter. From reflectance spectra of soil samples, the sensitive wavelengths for measuring the soil organic matter were selected and compared to previous research results. The grouping system for soil organic matter consisted of light sensor with band pass filter measuring the reflectance energy of the cut soil surface, global positing system (GPS), analog-to-digital (AD) converter, computer and operating software. The regression models to predict the soil organic matter were developed and evaluated. From field test, the accuracies of the developed light sensor system were 81.3% for five-stage grouping of the soil organic matters and 91.0% for three-stages grouping of the soil organic matters, respectively. It could be possible to support the decision making for variable rate applications with the developed grouping system for soil organic matter in precision agriculture.

  • PDF

Antioxidant and Tyrosinase Inhibition Activity Promoting Effects of Perilla by the Light Emitting Plasma (발광플라즈마 처리에 의한 들깨 부위별 항산화 및 Tyrosinase 저해 활성 효과)

  • Yoo, Ji Hye;Choi, Jae Hoo;Kang, Byeong Ju;Jeon, Mi Ran;Lee, Chan Ok;Kim, Chang Heum;Seong, Eun Soo;Heo, Kweon;Yu, Chang Yeon;Choi, Seon Kang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Background: The light emitting plasma (LEP) has recently attracted attention as a novel artificial light source for plant growth and functional component enhancement. We investigated the effects of LEP on whitening and antioxidant activities of the plant parts of perilla. Methods and Results: Previously germianted seeds of perilla were cultivated under different light conditions (fluoresce lamp, LED red, blue, white, green, and LEP) in a culture room for 2 months. Parts of perilla were harvested and extracted in 70% EtOH. The extracts were used to detect total phenolic contents, total flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and tyrosinase inhibition activity as indicators of biological activity. Biological activity was highest in seedlings grown under LEP. The total phenolic content was highest in the stems and the total flavonoid content was highest in the roots of perilla exposed to LEP. The DPPH and ABTS radical activity in all the parts of perilla exposed to LEP were higher by approximately three-fold compared to that in the control (fluoresce lamp). The reducing power values of perilla significantly increased after treatment with LEP. In addition, all the extract of perilla plants exposed to LEP promoted the tyrosinase inhibitory activity. These results suggest that LEP can be an important artificial light source for enhancement of biological activity. Conclusions: LEP could promote whitening and antioxidant activity of perilla.

Practical Design of an Artificial Light-Used Plant Factory for Common Ice Plant (Mesembryanthemum crystallinum L.) (인공광 이용형 Common Ice Plant 식물공장의 실용적 설계)

  • Cha, Mi-Kyung;Kim, Ju-Sung;Shin, Jong Hwa;Son, Jung Eek;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • This study was carried out to get the basic data to practically design an artificial light-used plant factory system for common ice plant (Mesembryanthemum crystallinum L.) cultivation. The adequate range of light intensity was $120-200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and the carbon fixed rates was $0.84nmolCO_2{\cdot}cm^{-2}{\cdot}s^{-1}$. When the planting density, light intensity, and yield were $0.0225m^2$ ($15{\times}15cm$), $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 1,000 plants per day, the total number of the plants, cultivated area, and total light intensities were estimated as 25,000 plants, $563m^2$, and $140,625{\mu}mol{\cdot}s^{-1}$, respectively. About 153.2kW with 2,785 fluorescent lights (FL) needed for the electric power and the electricity charges was 2.46 million won for one month. At a harvest rate of 1,000 plants per day in closed-type plant factory, the light installation cost, total installation cost, and total production cost were 27.85, 83.56, and 100.27 million won, respectively. The production cost per plant including labor cost was calculated as 370 won, providing that the cultivation period was 25 days and marketable ratio was 80%. Considering the annual total expenses, incomes, and depreciation cost, the sales cost per plant could be estimated around 970 won or higher.

The effect of Equilume light masks on the timing of seasonal ovulation of Thoroughbred mares in South Korea

  • Lee, Gaeun;Jung, Heejun;Yoon, Minjung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Advancing the estrous cycle of mares is an essential breeding strategy that is routinely conducted by Thoroughbred breeders to improve economic outcomes. For this purpose, Equilume light masks have been developed as an alternative to existing technologies such as artificial lighting or hormonal treatments because they are considered as valid as existing methods with additional animal welfare advantages. For example, with the Equilume light masks, horses can be let out into the pasture, whereas they have to be kept indoors during lighting treatment. Because the function of Equilume light mask on the estrous cycle of mares is influenced by environmental factors such as nutrition condition and temperature, Equilume light mask should be studied in various environments. The objective of the present study was thus to verify the effect of Equilume light masks on the onset of the estrous cycle in Thoroughbred mares in South Korea. Mares were randomly selected and separated into two groups at two Thoroughbred horse breeding farms. The mares in the treatment group were equipped with Equilume light masks from November 18 to February 10 the following year. The body condition, the number and size (> 35 mm) of uterine follicles, and the uterine horn score of the mares were assessed on January 6 and February 10. The body condition scores were not different between the two groups. The treatment with the Equilume light mask had no positive effects on developing follicles and the reproductive tract. In conclusion, the use of Equilume light masks did not influence the seasonal resumption of the estrus cycles in Thoroughbred mares in South Korea.

Investigation of Seismic Responses of Single- and Bi-Directional Traffic Light Poles (단방향 및 양방향 교통신호등주의 지진응답 분석)

  • Kim, Taehyeon;Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.219-226
    • /
    • 2022
  • The seismic responses of traffic light poles are investigated using a finite element analysis. Among the traffic light poles, single- and bi-directional traffic light poles are considered since such poles are frequently installed on vehicle roads. For a more detailed investigation, three different lengths of the mast arm are considered for each directional pole. For a time-history analysis, six actual and two artificial earthquakes are considered and applied to each direction of the poles (x and y) to investigate which direction input provides more significant responses due to the unsymmetrical structural shape. Herein, the x and y directions are respectively parallel and perpendicular based on the single mast pole case. From the analysis results, the average maximum displacement response is developed with the x-direction input case for both types of light poles. Also, the bi-directional traffic light poles show a 13% larger response than the single-directional traffic light poles. Even though the y-direction input case produces a smaller response, the response difference between the single- and bi-directional light poles considerably increases by about 60%. The average maximum acceleration responses are almost similar for both types of light poles.

An Experimental Study on the Optical Separation of Highly Concentrated Sunlight (Hot mirror를 이용한 고밀도 태양광의 광분리에 관한 기초실험 연구)

  • Kim, Yeongmin;Mo, Yonghyun;Shin, Sangwoong;Oh, Seungjin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2014
  • Highly concentrated sunlight obtained from a solar concentrator mounted on a solar tracker can be divided into the infrared and visible region before it is actually applied. That is, solar rays are directed toward a unit optically separating sunlight into the infrared and visible region by a hot mirror as they impinge on the surface of a secondary reflector. The Infrared rays can be utilized for thermoacoustic applications while visible rays can be utilized for indoor lighting. This work introduces the separation of two different kinds of light; sunlight and artificial light. As for the artificial light, its wavelength extended from 400m to 720m for the visible region and 620m to 940m for the infrared region. Comparatively, a series of tests performed on sunlight revealed its separation in the visible region from 460m to 680m whereas from 620m to 940m for the artificial light.

Analysis of Factors That Cause Light Pollution in Islands in Dadohaehaesang National Park (다도해해상국립공원 내 섬 지역의 빛공해 유발 요인 분석)

  • Sung, Chan Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.433-441
    • /
    • 2022
  • Light pollution is one of the factors that disturb coastal and island ecosystems. This study examined the factors causing light pollution in the islands in Daedohaehaesang National Park using nighttime satellite images. This study selected 101 islands with an area of 100,000 m2 or more in Daedohaehaesang National Park, and measured the levels of light pollution of the selected islands by calculating mean nighttime radiance recorded in VIIRS DNB monthly images for January, April, August, and October 2019. Of seven districts of the park, The highest mean nighttime radiance was recorded in Geumodo district (17,666nW/m2/sr), followed by Geonumdo·Baekdo, Narodo, Soando·Cheongsando districts. By season, mean nighttime radiance in October was the highest at 9,509nW/m2/sr, followed by August, January, and April. Regression analyses show that the total floor area and the number of lighthouses in a 5 km buffer area had a statistically significant effect on mean nighttime radiance at all times, but those within the island did not, indicating that light pollution in islands in a national park where land development is strictly restricted is influenced by artificial lights in nearby areas. However, the total floor area of an island significantly affected mean nighttime radiance only in August, which appears to be attributed to the impact of intensive use of artificial light by visitors during summer vacation. The size of an island had a negative (-) effect on nighttime radiance. This negative effect suggests that light pollution is a type of ecological edge effect, i.e., the smaller island is more likely to have a relatively larger proportion of edge area that is affected by light emitted from the neighboring areas. The results of this study indicate that managing artificial lights in nearby areas is necessary to mitigate light pollution in islands in marine and coastal national parks.

Investigation on Artificial Fruiting of Cordyceps militaris (번데기동충하초의 자실체 형성에 관한 연구)

  • Sung, Jae-Mo;Choi, Young-Sang;Shrestha, Bhushan;Park, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.6-10
    • /
    • 2002
  • The isolates of Cordyceps militaris preserved in EFCC, Kangwon National University were investigated to form the fruiting bodies under artificial conditions. The fruiting bodies were observed to be better in the 1l polyethylene bottle containing $60{\sim}80\;gm$ of brown rice and $100{\sim}110\;ml$ of water. Addition of $10{\sim}20\;gm$ of pupae per bottle showed higher fruiting. Similarly, addition of sucrose, peptone or hemoglobin also had favorable effect on fruiting. $25^{\circ}C\;and\;20^{\circ}C$ were favorable for mycelial growth and fruiting respectively. Light intensity of 500 lux and 12 h of light/dark period produced highest amount of fruit bodies.