• 제목/요약/키워드: ART2 Neural Network

검색결과 136건 처리시간 0.024초

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

개선된 RBF 신경망을 이용한 여권 인식 (The Passport Recognition by Using Enhanced RBF Neural Network)

  • 류재욱;김태경;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.529-534
    • /
    • 2002
  • 출입 관리는 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하고 출입국자를 관리하기 위하여 행하여진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에게 불편이 따르고 또한 출입국 부적격자에 대한 정확한 검색이 불분명하여 체계적으로 관리하기가 어렵다. 이러한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 본 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하였다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 신경망을 제안하여 여권 인식에 적용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델 (KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph)

  • 이재윤;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.91-100
    • /
    • 2020
  • 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 새로운 영상 기반 상식 추론(VCR) 문제들은 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등과 같이 추가적인 심층 상식 추론을 요구한다. 본 논문에서는 영상 기반 상식 추론 문제들을 위한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. KG_VCR 모델은 입력 데이터(영상, 자연어 질문, 응답 리스트 등)에서 추출하는 사물들 간의 관계와 맥락 정보들을 이용할 뿐만 아니라, 외부 지식 베이스인 ConceptNet으로부터 구해내는 상식 임베딩을 함께 활용한다. 특히 제안 모델은 ConceptNet으로부터 검색해낸 연관 지식 그래프를 효과적으로 임베딩하기 위해 그래프 합성곱 신경망(GCN) 모듈을 채용한다. VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서는 제안 모델인 KG_VCR이 기존의 VQA 최고 모델과 R2C VCR 모델보다 더 높은 성능을 보인다는 것을 입증한다.

PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts

  • Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
    • Genomics & Informatics
    • /
    • 제17권2호
    • /
    • pp.15.1-15.7
    • /
    • 2019
  • Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).

ART2 알고리즘을 이용한 애견 진단 시스템 (Health Diagnosis System of Pet Dog Using ART2 Algorithm)

  • 오세웅;김지홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권2호
    • /
    • pp.327-332
    • /
    • 2009
  • 본 논문에서는 애견 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 자신의 애견 건강 상태를 파악할 수 있는 진단 시스템을 제안한다. 제안된 진단 시스템은 105가지 질병과 각 질병의 증상을 데이터베이스에 구축하여 입력된 증상을 통해서 애견의 질병을 도출한다. 신경망의 자율 학습 방법인 ART2 알고리즘을 적용하여 질병을 클러스터링하고 그 결과 값인 클러스터의 출력값과 연결강도를 데이터베이스에 저장한 후 질병의 증상과 관련된 질의 결과를 입력 벡터로 제시하여 학습된 질병 정보와 비교하여 애견의 건강 상태를 진단한다. 애견의 건강 상태를 진단하는데 있어서 질병과 증상의 정확한 정보는 매우 중요하다. 따라서 본 논문에서는 질병과 증상의 정보를 데이터베이스로 구축하고 질병과 증상 정보를 효율적으로 관리할 수 있도록 하였다. 제안된 진단 시스템을 구현하여 수의학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 애견 질병의 보조 진단 시스템으로서의 가능성을 확인하였다.

  • PDF

인공신경망을 이용한 수중 충돌입자의 가시화 연구 (The Study of Visualization for Moving Particles in the Water Using Artificial Neural Network)

  • 신복숙;제성관;;김광백;조재현;차의영
    • 한국정보통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1732-1739
    • /
    • 2004
  • 본 논문은 다량의 가변적인 정보를 보유하고 있는 수중에서 유동하는 입자의 움직임을 추적하고 유체의 흐름에 따라 분산되는 입자의 분산정도 그리고 입자의 침전패턴을 정확하게 예측해내기 위해 인공신경망 알고리즘을 도입한 가시화 시스템을 제안한다. 이러한 시스템은 물과 같은 공간에서 움직이는 다양한 입자들을 고려하고 있는데, 물의 흐름을 위해서 운동량방정식과 연속방정식을 일반화하여 흐름을 제어하고 있다. 또한 입자간에 작용하는 부력, 침강력 등의 물리적인 힘과 침전패턴에 주요한 영향을 주고 있는 입자간의 충돌은 인공신경망 ART2를 이용하여 충돌을 감지하도록 하고 있다. 본 논문에서 제안한 시스템을 통해 다양한 외부적인 요인에 따라 움직임을 달리하는 유동 입자들을 실제 물에서와 같이 유사하게 가시화되도록 한다. 또한 가시화된 유동 입자의 움직임을 효율적으로 추적하고, 침전하는 입자들의 패턴까지도 미리 예측해 낼 수 있다.

스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식 (Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP)

  • 한수환
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.34-42
    • /
    • 1997
  • 본 논문은 산업분야의 군사적으로 많이 사용되고 있는 planar shape의 인식을 스펙트럼 분석기를 이용하여 FFT 스펙트럼으로부터 추출된 3차원 특징 벡터와 신경회로망인 fuzzy ARTMAP을 이용하여 시도되었다. 외곽선 정보를 추출하여 이를 원점으로 이동시키고 각 경계점들과 원점들과의 유클리드 거리를 구하여 이를 다시 FFT스펙트럼과 스펙트럼 분석기를 통하여 3차원 특징 벡터를 추출하였다. 이 3차원 데이터는 이동, 회전, 크기에 무관한 값으로 fuzzy ARTMAP에 입력값으로 사용하였다. Fuzzy ARTMAP은 두개의 fuzzy ART 모듈을 가지고 있으며 위에서 구한 특징 벡터들에 의해 학습되고 실험되어 진다.본 논문에 포함된 실험은 4개의 비행기와 4개의 산업부품을 이용하여 잡음이 섞인 shape의 인식에 있엇 제시된 방법이 좋은 인식률을 기록함을 보여주고 있다.

  • PDF

Gated Recurrent Unit Architecture for Context-Aware Recommendations with improved Similarity Measures

  • Kala, K.U.;Nandhini, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.538-561
    • /
    • 2020
  • Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.

Exploring reward efficacy in traffic management using deep reinforcement learning in intelligent transportation system

  • Paul, Ananya;Mitra, Sulata
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.194-207
    • /
    • 2022
  • In the last decade, substantial progress has been achieved in intelligent traffic control technologies to overcome consistent difficulties of traffic congestion and its adverse effect on smart cities. Edge computing is one such advanced progress facilitating real-time data transmission among vehicles and roadside units to mitigate congestion. An edge computing-based deep reinforcement learning system is demonstrated in this study that appropriately designs a multiobjective reward function for optimizing different objectives. The system seeks to overcome the challenge of evaluating actions with a simple numerical reward. The selection of reward functions has a significant impact on agents' ability to acquire the ideal behavior for managing multiple traffic signals in a large-scale road network. To ascertain effective reward functions, the agent is trained withusing the proximal policy optimization method in several deep neural network models, including the state-of-the-art transformer network. The system is verified using both hypothetical scenarios and real-world traffic maps. The comprehensive simulation outcomes demonstrate the potency of the suggested reward functions.

ART와 다층 퍼셉트론을 이용한 얼굴인식 시스템의 성능분석 (Performance Analysis of Face Image Recognition System Using A R T Model and Multi-layer perceptron)

  • 김영일;안민옥
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.69-77
    • /
    • 1993
  • Automatic image recognition system is essential for a better man-to machine interaction. Because of the noise and deformation due to the sensor operation, it is not simple to build an image recognition system even for the fixed images. In this paper neural network which has been reported to be adequate for pattern recognition task is applied to the fixed and variational(rotation, size, position variation for the fixed image)recognition with a hope that the problems of conventional pattern recognition techniques are overcome. At fixed image recognition system. ART model is trained with face images obtained by camera. When recognizing an matching score. In the test when wigilance level 0.6 - 0.8 the system has achievel 100% correct face recognition rate. In the variational image recognition system, 65 invariant moment features sets are taken from thirteen persons. 39 data are taken to train multi-layer perceptron and other 26 data used for testing. The result shows 92.5% recognition rate.

  • PDF