• 제목/요약/키워드: ART Algorithm

검색결과 585건 처리시간 0.031초

개선된 ART2 알고리즘을 이용한 자가 질병 진단 시스템 (Self Disease Diagnosis System Using Enhanced ART2 Algorithm)

  • 김광백;우영운;김주성
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2150-2157
    • /
    • 2007
  • 본 논문에서는 개인의 건강 상태를 일련의 과정에 따라 스스로 파악하여 전문 의료 관리에 대한 접근 방향의 결정을 돕고 전문의가 쉽게 새로운 질병 및 증상을 학습 할 수 있도록 하는 자가 질병 진단 시스템을 제안하였다. 제안된 자가 진단은 보건 복지부에 제출된 #한국인이 부담을 가지는 질병# 관련 보고서와 의료 콘텐츠 #Engel Pharm#을 참조하여 선정한 60가지의 질병과 각 질병에 대한 대표 증상 161가지를 이용하여 질병을 도출한다. 개선된 ART2 학습 알고리즘을 적용하여 질병 종류를 군집화하고 각 질병의 증상에 관련된 질의 결과를 입력 벡터로 제시하여 사용자의 건강 상태를 진단함으로써 자신의 건강에 대한 정보를 제공한다.

ART2 알고리즘을 이용한 효율적인 스마트폰 어플리케이션 실행 방법 (An Efficient Smart Phone Applications Executing Method by ART2 Algorithm)

  • 김광백
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.569-574
    • /
    • 2013
  • 스마트폰에서 어플리케이션을 실행하기 위해서는 많은 단계를 거치게 되며 그에 따라 많은 시간을 소비하게 된다. 따라서 본 논문에서는 ART2 알고리즘을 이용하여 잠금 상태에서 스마트폰의 어플리케이션을 쉽고 빠르게 구동하기 위한 방법을 제안한다. 자신이 원하는 그림과 설치되어있는 어플리케이션과의 대응 테이블을 만들기 위하여 학습 어플리케이션을 실행한다. 학습 어플리케이션의 동작 순서는 어플리케이션 실행 후, 화면 하단에서 빠른 실행을 하고자 하는 어플리케이션을 선택하고 좌측 상단에 위치하고 있는 입력 부분에 그림을 그린 후, 학습 버튼을 클릭한다. 그려진 그림의 배경은 0으로 그림은 1로 변환하고 ART2의 입력으로 사용할 수 있도록 일정한 크기로 정규화 한다. 정규화 된 데이터를 ART2의 입력 데이터로 적용한다. 학습이 끝난 후, 잠금 상태에서 액정 윗부분에 학습된 것과 같은 모양의 그림을 그려 해당 어플리케이션을 실행한다.

동적인 임계화 방법과 개선된 학습 알고리즘의 신경망을 이용한 차량 번호판 인식 (Recognition of Car License Plate by Using Dynamical Thresholding and Neural Network with Enhanced Learning Algorithm)

  • 김광백;김영주
    • 정보처리학회논문지B
    • /
    • 제9B권1호
    • /
    • pp.119-128
    • /
    • 2002
  • 본 논문에서는 차량 영상으로부터 동적인 임계화 방법과 개선된 성능의 학습 알고리즘에 의한 신경망을 이용하여 차량 번호판 인식방법을 제안하였다. 제안된 방법에서 번호판 영역은 차량 영상의 구조적 속성을 이용한 동적인 임계화 방법과 밀집비율을 함께 고려하여 추출하였다. 추출된 영역으로부터의 개별문자와 숫자는 윤곽선 추적 알고리즘을 이용하여 각각 추출하였으며, 그들의 인식을 위해서 수정된 ART1과 지도 학습 방법을 결합한 개선된 성능의 신경망을 이용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 차량 번호판들을 대상으로 실험한 결과, 기존의 그레이 명암이나 RGB 컬러 정보들을 이용하는 방법보다 추출률이 개선되었으며, 인식성능도 기존의 오류 역전파 알고리즘의 신경망보다 우수한 성능이 있음을 확인하였다.

퍼지 RBF 네트워크의 학습 성능 개선 (Learning Performance Improvement of Fuzzy RBF Network)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.369-376
    • /
    • 2006
  • 본 논문에서는 퍼지 RBF네트워크의 학습 성능을 개선하기 위하여 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 퍼지 RBF 네트워크를 제안한다. 제안된 학습 알고리즘은 일반화된 델타 학습 방법에 퍼지 C-Means 알고리즘을 결합한 방법으로, 중간층의 노드를 자가 생성하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하여 학습 성능을 개선한다. 제안된 RBF 네트워크의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 40개의 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크와 기존의 퍼지 RBF 네트워크 보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm)

  • 김광백
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.519-524
    • /
    • 2006
  • 자궁 경부암 세포진 영상의 영역 분할은 슬라이드의 상태나 정상 및 비정상에 따라 많은 차이를 보여 자궁경부암 세포진 인식 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 퍼지 그레이 모폴로지 연산을 이용하여 핵을 추출하고, 추출된 세포진 핵 영역은 형태학적 정보와 명암 정보, 색상 정보 및 질감 정보를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징들을 개선된 퍼지 ART 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵의 추출과 인식에 있어서 효율적임을 확인하였다.

ART1 기반 퍼지 지도 학습 알고리즘 (ART1-based Fuzzy Supervised Learning Algorithm)

  • 김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

반복 분할 기반의 적응적 랜덤 테스팅 향상 기법 (Modified Adaptive Random Testing through Iterative Partitioning)

  • 이광규;신승훈;박승규
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.180-191
    • /
    • 2008
  • 적응적 랜덤 테스팅 (Adaptive Random Testing, ART)은 입력 도메인 내의 오류 패턴을 순수 랜덤 테스팅 (Random Testing, RT)보다 좋은 효율로 찾아내기 위해 고안된 테스트 케이스 선택 알고리즘이다. 대표적인 ART 기법인 거리 기반 ART (Distance-based ART, D-ART)와 제한 영역 기반 ART (Restricted Random Testing, RRT) 둥은 좋은 성능을 보이기는 하지만, 테스트 케이스 선택에 필요한 많은 양의 거리 계산으로 인한 느린 테스트 케이스 생성과 거리 기반 방식의 사용으로 인한 테스트 케이스 분포의 불균일성이라는 단점을 가진다. 반복 분할 기반 ART (ART through Iterative Partitioning, IP-ART)는 입력 도메인을 반복 분할하는 방식을 통해 D-ART와 RRT가 가진 계산 부하를 크게 감소시켰다. 하지만 IP-ART의 경우에도 테스트 케이스 분포 문제는 여전히 존재하여 기법의 확장 적용에 대한 장애 요소로 작용하고 있다. 따라서 본 논문에서는 이와 같은 IP-ART의 단점 완화 및 성능 개선을 위한 방법을 제안하고, 실험을 통해 평균 9% 정도의 성능 향상을 확인하였다.

개선된 신경망과 사진 인증을 이용한 여권 인식 (Recognition of Passports using Enhanced Neural Networks and Photo Authentication)

  • 김광백;박현정
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.983-989
    • /
    • 2006
  • 현재의 출입국 관리는 여권을 제시하면 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권 데이터베이스와 대비하는 것이다. 본 논문에서는 여권의 정보를 인식 할 수 있는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 ART2 알고리즘을 RBF 네트워크의 중간층으로 적용하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법으로 동작하는 RBF 네트워크를 적용한다. 사진 영역은 코드의 문자열 영역을 추출한 후에 코드의 문자열 영역이 시작되는 좌표를 중심으로 사진 영역을 추출한 후, Luminance, Edge, Hue 정보를 이용하여 사진 부분을 검증한다. 검증된 사진 부분 영상은 ART2 알고리즘을 적용하여 사진의 특징들을 분류하고, 이를 이용하여 사진 인증을 하게 된다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.