본 논문에서는 SOM과 개선된 ART-1을 이용하여 악보를 인식하는 방법을 제안한다. 악보 인식을 위해 스캔된 악보 이미지를 호프 변환, Otsu's 이진화를 원본 이미지에 적용하고, 히스토그램 분석을 통해 구분된 작은악절에서 오선을 제거하여 악보의 음표 성분을 추출할 수 있는 이미지 전처리 단계를 수행한다. 오선이 제거된 작은악절은 레이블링을 이용하여 음표 성분을 분리한다. 추출된 음표들은 SOM 알고리즘을 적용하여 일정한 크기로 정규화하고, 정규화된 음표 정보들을 개선된 ART-I 알고리즘을 적용하여 학습과 인식한다. 제안된 방법을 적용하여 음표 인식 실험을 한 결과, 제안된 방법이 음표 인식에 효율적임을 확인하였다.
음악 연구에 따른 컴퓨터의 역할이 점차 중요한 비중을 차지함에 따라 효과적인 악보 인식과 효율적인 악보의 편집 및 수정 방법이 요구된다. 기존의 수동 입력 방식에서는 악보를 부정확하게 입력하여 수정하는 경우에는 작업시간이 많이 소요되며, 각 수정 프로그램에서 만든 악보는 특정 프로그램에서만 재수정이 가능하다는 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 이미 작성 되어있는 악보들을 자동으로 인식하는 방법을 제안한다. 제안된 악보 인식 방법은 수평 히스토그램을 이용하여 악보 이미지의 오선을 제거한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 잡음을 제거하고 Grassfire 알고리즘을 적응하여 악보 구성 기호들을 추출한다. 추출된 악보 구성 기호들은 hierarchical ART2 알고리즘을 적용하여 인식된다. 제안된 악보 인식 방법 의 성능을 평가하기 위해 100장의 악보 영상을 대상으로 실험한 결과, 제시된 hierarchical ART2 알고리즘을 이용한 악보 영상의 인식 방법이 효율적임을 확인하였다.
이미지 인식 분야에 있어서 전자 결재시 도장의 진위 문제와 은행업무 또는 중요서류에 있어서의 도장 진위 문제는 점점 더 중요하게 부각되고 있는데 반해 기존의 도장 이미지 처리 과정은 물체의 테두리 부분과 같이 명암도가 날카롭게 변하는 부분의 선명도를 흐리게 하는 단점이 있으며 윤곽선을 추출하는데 어려움이 많다. 본 논문에서는 개선한 평활화 방법을 이용하여 특정한 범위내의 픽셀을 조사하여 가장 빈번히 나타나는 값을 찾고,그 값을 해당 픽셀의 값으로 대체시켜 윤곽선을 검출한 다음, ART1 학습 알고리즘에서 경계값을 퍼지 연산자중 Yager의 일반화된 교연산자를 적용하여 경계변수값을 동적으로 변화시켜 올바른 분류가 될 수 있도록 한다. 본 논문에서 제안한 ART1학습 알고리즘에 적용하여 실험한 결과 기존의 ART1 알고리즘을 이용한 경우보다 향상된 이미지 인식율을 보였다.
본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.
Adaptive resonance theory (ART2) characterized by its built-in mechanism of handling the stability-plasticity switching and by the adaptive learning without forgetting informations learned in the past, is based on an unsupervised template matching. We propose an improved tow-stage learning algorithm for aRT2: the original unsupervised learning followed by a new supervised learning. Each of the output nodes, after the unsupervised learning, is labeled according to the category informations to reinforce the template pattern associated with the target output node belonging to the same category some dominant classes from exhausting a finite number of template patterns in ART2 inefficiently. Experimental results on a set of 2545 FLIR images show that the ART2 trained by the two-stage learning algorithm yields better accuracy than the original ART2, regardless of th esize of the network and the methods of evaluating the accuracy. This improvement shows the effectiveness of the two-stage learning process.
본 논문에서는 ART2 알고리즘을 이용하여 질병을 도출하고 증상의 차이를 구분하기 위해서 애매한 증상의 정도를 퍼지 추론 방법에 적용하여 더욱더 정확한 질병 상세를 도출할 수 있는 개선된 자가진단 시스템을 제시한다. 본 논문에서 제안한 방법을 전문의에게 분석을 의뢰한 결과, 본 논문에서 제안된 자가진단 시스템 방법이 이전의 방법보다, 지능형 자가 보조 진단 시스템으로서 사용자에게 더욱 효과적인 도움을 줄 수 있는 가능성을 확인하였다.
The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.
Minimal art, which began to flourish in the mid-1960s, explores perceptual situations caused by the involvement of objects in given site contexts. This has led to the mentions of minimal art as a site-specific art, but its limitations have also been pointed out. This study specifically addresses the limitations of minimal art as a site-specific art with two perceptual points of view. First, according to Michael Fried, situations described as 'now here' focus largely on the bodily experiences of a place. However, they do not rooted in specific time and space of a certain place. Second, the unique characteristics of a certain place are excluded from the perception of the body which occupies the passage of time. Self-sufficient algorithm, which is far from site-specific conditions, is the autonomous system creating the period in the way of arrangement of objects. In addition, Minimal art regards a body only as the objectivity excluding the subjectivity which is essential creating meaning in a place. In the latter part of the article, these features are dealt with through Donald Judd's works. This study on site-specificity also provides a new perspective on the discussion of Minimal architecture and Minimal landscape.
본 논문은 그레이 명암도 변화와 HSl 컬러 모형의 Hue 정보를 함께 이용한 번호판 영역 추출 방법을 제안한다. 차량 이미지에서 차량 번호판 추출은 명암도 변화를 이용하여 번호판 후보 영역을 추출하고 후보 영역에 대해 HSI 컬러 모형의 Hue 정보를 이용하여 실제 번호판 영역을 결정한다. 추출된 번호판 영역으로부터 문자를 포함하는 특징 영역 추출은 각 문자들에 대한 히스토그램을 이용하여 추출한다. 그리고 Yager의 합접속 연산자를 이용하여 경계 변수 값을 동적으로 변화시키는 개선된 ART2 알고리즘을 제안하고 번호판의 개별 문자 인식에 적용한다. 또한 개선된 ART2와 지도 학습 방법을 통합한 SOSL 알고리즘을 제안한다. 100개의 실제 차량 이미지를 이용한 실험 결과를 통해 제안된 번호판 영역 추출 방법이 단일 컬러 모형을 적용한 기존 추출 방법보다 추출률이 향상되었고, 개선된 알고리즘들이 기존의 ART2 알고리즘과 오류 역전파 알고리즘 보다 더 높은 인식률을 보임을 알 수 있었다.
본 논문은 퍼지 ART 신경망 알고리즘을 이용하여 내용기반 영상을 검색하는 연구를 제시한다. 대용량의 영상 데이터베이스를 검색할 때, 클러스터링은 빠른 검색을 위해 중요하다. 그러나 많은 양의 영상 데이터를 적절하게 클러스터링 하는 것은 상당히 어렵다. 기존의 유사도에 따른 검색 방법은 검색의 정확도가 떨어지고 검색시간이 많이 걸리는 단점이 있기 때문에 이러한 단점을 보완하는 방법이 필요하다. 본 논문에서는 앞서 언급한 문제점을 보완하기 위하여 신경망 알고리즘을 사용한 내용기반 영상검색 시스템을 제안한다. 퍼지 ART 신경망 알고리즘을 사용한 본 검색 시스템에서는 색상과 질감을 검색에 필요한 특징치로 잡아 데이터를 0과 1사이의 데이터로 정규화 하여 신경망 알고리즘의 입력 데이터로 넣어서 영상을 클러스터링 한 후 검색을 실시하였다 300개의 영상을 가지고 실험한 결과 약 87%의 검출률을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.