• Title/Summary/Keyword: ARMA

Search Result 319, Processing Time 0.039 seconds

Lower-order ARMA Modeling of Head-Related Transfer Functions for Sound-Field Synthesis Systme

  • Yim, Jeong-Bin;Kim, Chun-Duck;Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.37-44
    • /
    • 1996
  • A new method for efficient modeling of the Head-Related Transfer Functions(HRTF's) without loss of any directional information is proposed. In this paper, the HRTF's were empirically measured in a real room and modeled as the ARMA models with common AR coefficients and different MA coefficients. To assess the validity of the proposed ARMA model, psychophysical tests show that the proposed ARMA model, in comparison with the conventional MA model, requires a small number of parameters to represent empirical HRTF's and improves the back-to-front confusions in sound-field localization. Thus, significant simplifications in the implementations of sound-field synthesis systems could be obtained by using the proposed ARMA model.

  • PDF

A Sliding Memory Covariance Circular Lattice Filter and Its Application to ARMA Modeling (슬라이딩 메모리 공분산형 환상 격자 필터 및 ARMA모델링에의 응용)

  • 장영수;이철희;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 1989
  • A sliding memory covariance circular lattice (SMC-CL) filter and an efficient ARMA modeling method using the SMC-CL filter are presented. At first, SMC-CL filter is derived based on the geometric approach. Then ARMA process is converted into 2 channel AR process, and SMC-CL filter is applied to it. The structure of SMC-CL filter becomes simpler in case of ARMA modeling due to the whiteness of a driving input process. The parameters of ARMR process can be obtained by the Levinson recursions from the PARCOR coefficients of the second channel of the filter. Computer simulations are performed to show the effctiveness of the proposed algorithm.

  • PDF

Design of An Integrated Neural Network System for ARMA Model Identification (ARMA 모형선정을 위한 통합된 신경망 시스템의 설계)

  • Ji, Won-Cheol;Song, Seong-Heon
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.63-86
    • /
    • 1991
  • In this paper, our concern is the artificial neural network-based patten classification, when can resolve the difficulties in the Autoregressive Moving Average(ARMA) model identification problem To effectively classify a time series into an approriate ARMA model, we adopt the Multi-layered Backpropagation Network (MLBPN) as a pattern classifier, and Extended Sample Autocorrelation Function (ESACF) as a feature extractor. To improve the classification power of MLBPN's we suggest an integrated neural network system which consists of an AR Network and many small-sized MA Networks. The output of AR Network which will gives the MA order. A step-by-step training strategy is also suggested so that the learned MLBPN's can effectively ESACF patterns contaminated by the high level of noises. The experiment with the artificially generated test data and real world data showed the promising results. Our approach, combined with a statistical parameter estimation method, will provide a way to the automation of ARMA modeling.

  • PDF

A Method to Enhance Dynamic Range for Seismic Sensor Using ARMA Modelling of Low Frequency Noise and Kalman Filtering (지진계 저주파수 잡음의 ARMA 모델링 및 칼만필터를 이용한 지진계 동적범위 향상 방법)

  • Seong, Sang-Man;Lee, Byeung-Leul;Won, Jang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method to enhance the dynamic range of seismic sensor is proposed. The low frequency noise included in the measurement of seismic sensor is modelled as an ARMA(Auto Regressive Moving Average) model and the order and parameters of the model are identified through system identification method. The identified noise model is augmented into Kalmman filter which estimate seismic signal from sensor measurement. The proposed method is applied to a newly developed seismic sensor which is MEMS based 3-axis accelerometer type. The experiment show that the proposed method can enhance the dynamic range compared to the simple low pass filtering.

ARMA-PL : Tacking Nested Periods and Linear Trend Time Series Data (ARMA-PL : 시계열 데이터에 나타나는 중첩된 주기 및 선형추세에 대한 고찰)

  • Suh, Jung-Yul;Lee, Sae-Jae;Oh, Hyun-Seung;Koo, Ja-Hwal;Lim, Taek;Cho, Jin-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.112-126
    • /
    • 2010
  • 시계열데이터는 ARMA 분석에 적합지 않은 요소를 내재하고 있는 경우가 있다. 특히 선형성과 주기성을 가진 요소가 확률적인 분포와 자주 혼재되어 있다. 이 논문에서는 이런 선형적 주기적 요소를 찾아내고 분석하는 방법을 제시한다. 특히 주기적 요소는 여러 주기가 층층이 겹쳐져서 나타난다. 주기 간에는 서로 일정 정수비율을 유지하며, 한 주거 안에 다른 주기가 내포되어 있는 경우(nested periods)가 많다. 시간규모(time-scale)개념을 도입하여 이러한 주기적 요소를 개념적으로 정립하고자 했다. 선형적 요소와 주기적 요소가 제거된 후 추출된 데이터는 MA-approximation이라는 방법을 사용하여 가장 데이터에 근접한 ARMA 모텔을 찾아낸다. 마지막으로 선형적 주기적 요소와 ARMA 추정결과를 종합하여 control boundary를 결정하는 방법을 제시한다.

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.

A Technique for Generation of Template Signal using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA시스템 모델링을 이용한 코히어런트 임펄스 통신 수신단 참조 신호 발생 기법)

  • Lee Won Cheol;Park Woon Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1606-1616
    • /
    • 2004
  • This paper introduces a technique for generating an appropriate template signal via modeling of minimum-phase stable ARMA (Auto-Regressive Moving Average) system for coherent impulse communication systems. It has been well known that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator, these impairments degrade overall performance attributed to low level of coherence. To increase the degree of coherence, our proposed scheme realizes A3U system derived by Gaussian pulse signal, which simulates the overall characteristic of transfer function in between transmit and receive wideband antennas so as to generate an appropriate template signal in a form of output. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

ARMA-based data prediction method and its application to teleoperation systems (ARMA기반의 데이터 예측기법 및 원격조작시스템에서의 응용)

  • Kim, Heon-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • This paper presents a data prediction method and its application to haptic-based teleoperation systems. In general, time delays inevitably occur during data transmission in a network environment, which degrades the overall performance of haptic-based teleoperation systems. To address this situation, this paper proposes an autoregressive moving average (ARMA) model-based data prediction algorithm for estimating model parameters and predicting future data recursively in real time. The proposed method was applied to haptic data captured every 5 ms while bilateral haptic interaction was carried out by two users with an object in a virtual space. The results showed that the prediction performance of the proposed method had an error of less than 1 ms when predicting position-level data 100 ms ahead.

Residual-based Robust CUSUM Control Charts for Autocorrelated Processes (자기상관 공정 적용을 위한 잔차 기반 강건 누적합 관리도)

  • Lee, Hyun-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2012
  • The design method for cumulative sum (CUSUM) control charts, which can be robust to autoregressive moving average (ARMA) modeling errors, has not been frequently proposed so far. This is because the CUSUM statistic involves a maximum function, which is intractable in mathematical derivations, and thus any modification on the statistic can not be favorably made. We propose residual-based robust CUSUM control charts for monitoring autocorrelated processes. In order to incorporate the effects of ARMA modeling errors into the design method, we modify parameters (reference value and decision interval) of CUSUM control charts using the approximate expected variance of residuals generated in model uncertainty, rather than directly modify the form of the CUSUM statistic. The expected variance of residuals is derived using a second-order Taylor approximation and the general form is represented using the order of ARMA models with the sample size for ARMA modeling. Based on the Monte carlo simulation, we demonstrate that the proposed method can be effectively used for statistical process control (SPC) charts, which are robust to ARMA modeling errors.

Soil Moisture Time Series Modeling for Daily Measured at a Steep Relief Measured in a Mountainous Hillside (산지사면에서 측정된 일단위 토양수분 시계열 자료의 모델링)

  • Jeong, Ju Yeon;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.462-462
    • /
    • 2015
  • 이 논문에서는 시 공간적 토양수분 변화를 파악하기 위해 다년간 축적된 실측 토양수분 데이터를 이용하여 단변량 시계열 분석을 하였다. 지형에 따른 토양수분 변화를 알아보기 위해 경기도 파주에 위치한 설마천 유역의 산지사면 중 한 단면을 선정하였으며, 깊이에 따른 변동성은 깊이 10cm와 30cm에서 측정한 토양수분 데이터를 이용하여 분석하였다. 또한, 연도별 토양수분의 변화를 파악하고 토양수분을 예측하기 위해 2010-2013년의 토양수분 데이터를 일단위로 단변량 모델링을 시도하였다. 그 결과, 연도별 변화에 따른 경향성은 보이지 않았으며 대부분의 지점에서 ARMA(1, 1) 또는 ARMA(1, 0) 모형으로 모의되었다. 2시간 간격의 1-2개월 단기간 토양수분 데이터를 모의한 선행연구와 달리 본 연구에서는 낮은 차수의 모형을 보였다. 지형적 토양수분 거동을 살펴보면 상부사면에 위치하고 있는 지점에서는 모두 ARMA(1, 1)로 표현되지만 하부사면에 위치한 지점들은 연도나 심도에 따라 ARMA(1, 0)으로 모의된다. 단변량 모형의 정확도를 알아보기 위해 R2와 RMSE를 비교하였다. 10cm 깊이에서는 경향성을 보이지 않으나, 30cm 깊이에서는 사면하부로 갈수록 R2는 작아지고 RMSE는 커져, 하부사면에서의 모델링이 상부사면에 비해 정확도가 낮음을 보였다. 또한 2012년 토양수분 자료를 이용하여 2013년 토양수분을 예측하기 위해 2012년 매개변수와 2013년 전일 데이터를 이용하여 예측하고자 하는 일단위 토양수분을 구하였다. 그 결과 $R^2=0.646-0.807$, RMSE=1.758-4.802의 정확도를 나타냈다.

  • PDF